首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The goal of the Regional Haze Rule (RHR) is to return visibility in class I areas (CIAs) to natural levels, excluding weather-related events, by 2064. Whereas visibility, the seeing of scenic vistas, is a near instantaneous and sight-path-dependent phenomenon, reasonable progress toward the RHR goal is assessed by tracking the incremental changes in 5-yr average visibility. Visibility is assessed using a haze metric estimated from 24-hr average aerosol measurements that are made at one location representative of the CIA. It is assumed that, over the 5-yr average, the aerosol loadings and relative humidity along all of the site paths are the same and can be estimated from the 24-hr measurements. It is further assumed that any time a site path may be obscured by weather (e.g., clouds and precipitation), there are other site paths within the CIA that are not. Therefore, when calculating the haze metric, sampling days are not filtered for weather conditions. This assumption was tested by examining precipitation data from multiple monitors for four CIAs. It is shown that, in general, precipitation did not concurrently occur at all monitors for a CIA, and precipitation typically occurred 3-8 hr or less in a day. In a recent paper in this journal, Ryan asserts that the haze metric should include contributions from precipitation and conducted a quantitative assessment incorrectly based on the assumption that the Optec NGN-2 nephelometer measurements include the effects of precipitation. However, these instruments are programmed to shut down during rain events, and any data logged are in error. He further assumes that precipitation occurs as often on the haziest days as the clearest days and that precipitation light scattering (bprecip) is independent of geographic location and applied an average bprecip derived for Great Smoky Mountains to diverse locations including the Grand Canyon. Both of these assumptions are shown to be in error.  相似文献   

2.
Environmental Science and Pollution Research - In this study, a multimethodological analysis involving optical and physical/chemical diagnostic techniques and 3D photogrammetric survey was...  相似文献   

3.
4.
5.
6.
7.
8.
To determine if ozone (O3) and root zone temperature (RZT) affect plant biomass allocation and photosynthesis, radish (Raphanus sativus) plants were grown in controlled environment laboratory chambers in one of four treatments: episodic O3 (average delivery 0.063 mumol mol-1) with RZT at 13 degrees C, episodic O3 (same delivery) with RZT at 18 degrees C, charcoal-filtered air with RZT at 13 degrees C and charcoal-filtered air with RZT at 18 degrees C. O3 reduced total biomass and shoot biomass of radish at 13 degrees C RZT but had no effect at 18 degrees C RZT. Low (13 degrees C) RZT decreased total biomass in both O3 and charcoal-filtered air. RZT had no overall effect on biomass allocation, but O3 lowered root-to-shoot ratios for plants grown at 18 degrees C RZT. Photosynthesis was reduced for plants grown at 18 degrees C RZT and O3, but stomatal conductance was not affected by O3 nor RZT. These results indicate that O3 and low RZT decrease biomass, but that plant photosynthesis is decreased by O3 and warm RZT.  相似文献   

9.
10.
通过添加磁种和混凝剂,用高梯度磁分离方法去除污水中正磷酸盐污染物,并对工艺参数进行了探讨.  相似文献   

11.
12.
我国推行“三同时”制度已有20年,在污染防治工作中发挥积极作用,推动了污染防治的有效开展,但是,随着社会主义市场经济的建立,经济体制改革的深入,个体私营企业的快速发展给“三同时”制度的执行提出了新内容,针对个体私营企业执行“三同时”现状及2,提出了对策措施。  相似文献   

13.
14.
浙江省第十一次党代会为全面推进我省社会主义现代化建设进一步指明了方向。党代会报告明确提出了创建“绿色浙江”,这是我省在新的历史阶段 ,围绕人的全面发展 ,促进人与自然的和谐、物质文明和精神文明的协调 ,走生产发展、生活富裕、生态良好的文明发展道路内在要求的集中体现。1 对建设“绿色浙江”目的性的认识建设“绿色浙江”的目的是以“以人为本”、“天人合一”理念和可持续发展思想为指导 ,遵循生态规律和自然规律 ,积极建设和保护“天蓝、水清、山绿”的自然生态环境 ,为营造良好的人居生存环境和投资发展环境奠定基础 ,同时 ,…  相似文献   

15.
从"绿水青山"和"金山银山"两个方面构建耦合协调评价指标体系,采用主客观相结合的方法测算绿水青山指数和金山银山指数,对长三角15个核心城市2008—2017年"绿水青山"和"金山银山"的耦合协调度进行评价;在此基础上,采用固定效应面板模型对各影响因素进行回归分析。结果表明:2008—2017年间,长三角地区绿水青山指数呈现波动上升趋势,金山银山指数逐年上升;耦合协调度由初级协调阶段逐步提升为中级协调阶段,"绿水青山"和"金山银山"的协调发展程度逐步向好。影响因素分析发现,耦合协调度与经济发展呈现正U型关系;外商直接投资对耦合协调度呈现负向影响;技术进步能够提升耦合协调度;人力资本对耦合协调度的正向影响具有显著滞后效应,人力资本的积累有利于促进"绿水青山"和"金山银山"长期耦合协调发展。  相似文献   

16.
Optical investigations of the exhausts emitted by internal combustion (i.c.) engines and a stationary burner were performed, in order to assess their relative role as sources of organic matter to the atmosphere. Extinction spectra of air-diluted exhausts in the 200-400 nm u.v. band reveal the expected existence of gaseous trace-species (NO, NO2 and SO2) and carbonaceous particulate matter (soot). In addition, after subtracting the absorption contribution from known species, a strong residual absorption band remains below 250 nm, which is attributed to organic aromatic matter, involving no more than two aromatic rings. A set of ex situ extinction and laser induced fluorescence (LIF) experiments were carried out on condensed combustion-water samples. Extinction measurements from the water samples show absorption spectra similar to those observed from air-diluted samples, which are attributed to low volatility organic compounds, as they are trapped in the condensed phase. Combining the indications of extinction data for both air-diluted and condensed samples, it is suggested that the absorbing species might be molecular clusters of one/two aromatic rings. LIF spectra from condensed samples evidence two fluorescence bands, centered above 300 and 400 nm, respectively, whose intensities correlate with the combustion regimes. Analogous optical analysis on rain samples, collected in an urban area, showed that rain absorption and fluorescence spectra are similar to those found in condensed exhaust samples, which is consistent with the prevailing contribution of i.c. engines to the urban air pollution. The combined experimental data suggest that the absorbing and fluorescent species trapped in the condensed samples are organic (aromatic) compounds, involving mostly one two aromatic rings structural units, since they do not absorb above 250 nm. The overall molecular weight of the trapped material is likely heavy as they show low volatility.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号