首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
Abstract: A nine‐layered confined‐unconfined flow and transport model is developed for the Alamitos saltwater intrusion barrier in Southern California. The conceptual model is based on the geological structure of the coastal aquifer system. The key parameters in the flow and transport models are calibrated using a two‐phase procedure which matches the types of data available for calibration. Because of the abundance of point measurements of hydraulic conductivity, the heterogeneous and random hydraulic conductivity field for each of the five aquifers is estimated by the geostatiscal method of natural‐neighbor‐kriging in Phase 1. In Phase 2, the longitudinal and transverse dispersivities in the transport model are estimated by a traditional inverse procedure that minimizes the least‐squares error for concentration (LSE‐CON). The minimum LSE‐CON is achieved near 15.2 and 1.52 m for the longitudinal and transverse dispersivities, respectively. Additional simulations with increasing transport parameter complexity did not yield significant improvements in LSE‐CON. Also, tracking least‐squares error for head while parametrically varying the transport parameters revealed there is a negligible interaction between predicted head and transport parameters.  相似文献   

2.
ABSTRACT: Although evidence of modern recharge in the North African and Arabian sedimentary basin aquifers exists, it is difficult to determine the volume of recharge. Also, from the evidence of regional groundwater gradients, the flow within the aquifers seems to be appreciably greater than one would intuitively expect. A hypotehtical model embodying the characteristics of the aquifers has been used to investigate the likely significance of various possible flow mechanisms. It is shown that while dewatering in the unconfined area can possibly contribute to flows for a considerable period of time, the maintenance of water levels in the unconfined zone must be the result of modern recharge. It is also shown that recharge depths of less than 10 mm per annum are sufficient given suitable aquifer parameters. Results for various combinations of aquifer parameters and configurations are given, including layered aquifers and the effects of restricted oufflows. Comparisons are made using a “bench mark” example. The work indicates that there is little point in carrying out conventional hydrological balance studies in hyper-arid areas and that, instead, more emphasis should be placed upon good groundwater hydrographic data and modeling.  相似文献   

3.
An integer programming method was devised to locate detection monitoring wells in layered aquifers. The method is applicable to aquifers with non-uniform groundwater flow, and it does not require that a compliance boundary be linear or perpendicular to the direction(s) of groundwater flow. In each layer, monitoring sites are defined along curvilinear transects that parallel equipotential lines. The model can be formulated to allocate wells to the transect with the highest detection efficiency, or to establish multiple lines of defense against contaminant migrating to a compliance boundary. Detection efficiencies of alternative monitoring transects are calculated from parameters obtained via numerical modeling of contaminant transport. These parameters include the narrowest plume that could traverse a monitoring transect, and the zone width of potential contaminant migration at the transect. Problem formulations are compact, and computational requirements are low relative to alternative approaches for designing detection monitoring networks in aquifers. An application to a glacial outwash aquifer demonstrates the utility of the method.  相似文献   

4.
The vulnerability of four European aquifers with different hydrogeological and climatic characteristics was evaluated using the COP method. The results obtained were statistically analyzed by determination coefficients to measure which factor has greater importance in the vulnerability index. Furthermore, a new parameter has been designed to measure the vulnerability for the whole of the aquifer. The results demonstrate that COP is a useful method to assess the vulnerability of the test sites under consideration. The results obtained are coherent with the conceptual model of each pilot aquifer and the available hydrogeological information (hydrographs, isotopic data, tracer tests). Fissured carbonate aquifers (diffuse flow systems) are less vulnerable than karst aquifers (conduit flow systems) and the vulnerability index is more positively correlated with the O factor (unsaturated zone protection capacity) in the first case. The karst aquifers are more vulnerable than fissured aquifers and they show a higher correlation between the C factor (karst features) and the vulnerability index. Climatic variation (precipitation for example) influences the final vulnerability index of the aquifers according to the weight in the index and the spatial distribution.  相似文献   

5.
Abstract: Development of any numerical ground‐water model is dependent on hydrogeologic data describing the subsurface. These data are obtained from geologic core analyses, stratigraphic analyses, aquifer performance tests, and geophysical studies. But typically in remote areas, these types of data are very sparse and site‐specific in terms of the aerial extent of the resource to be modeled. Uncertainties exist as to how well the available data from a few locations defines a heterogeneous surficial aquifer such as the Biscayne Aquifer in Miami‐Dade County, Florida. This is particularly the case when an exceptionally conductive horizontal flow zone is detected at one site due to specialized testing that was not historically conducted at the other at sites that provided data for the model. Not adequately accounting for the potential effect of the high flow zone in the aquifer within a ground‐water numerical model, even though the zone may be of very limited thickness, might underpredict the well field protection capture boundaries. Applied Stochastic ground‐water modeling in determining well field protection zones is steadily becoming important in addressing the uncertainty of the hydrogeologic subsurface parameters, specifically in karstic heterogeneous aquifers. This is particularly important in addressing the uncertainty of a 60‐day travel time capture zone in the Northwest Well Field, Miami‐Dade County, where a predominantly high flow zone controls much of the flow in the production wells. A stochastic ground‐water modeling application along with combination of pilot points and regularization technique is presented to further consolidate the uncertainty of the subsurface.  相似文献   

6.
Abstract: The calibration of basin‐scale hydrologic models consists of adjusting parameters such that simulated values closely match observed values. However, due to inevitable inaccuracies in models and model inputs, simulated response hydrographs for multiyear calibrations will not be perfectly synchronized with observed response hydrographs at the daily time step. An analytically derived formula suggests that when timing errors are significant, traditional calibration approaches may generally underestimate the total event‐flow volume. An event‐adaptive time series is developed and incorporated into the Nash‐Sutcliffe Efficiency objective function to diagnose the potential impact of event‐flow synchronization errors. Test sites are the 50 km2 Subwatershed I of the Little River Experimental Watershed (LREWswI) in southeastern Georgia, and the 610 km2 Little Washita River Experimental Watershed (LWREW) in southwestern Oklahoma, with the Soil and Water Assessment Tool used as the hydrologic model. Results suggest that simulated surface runoff generation is 55% less for LREWswI when the daily time series is used compared with when the event‐adaptive technique is used. Event‐flow generation may also be underestimated for LWREW, but to a lesser extent than it may be for LREWswI, due to a larger portion of the event flow being lateral flow.  相似文献   

7.
ABSTRACT: The time base of a simulation model can be defined as a combination of two time intervals. One is the interval used for input and internal computations. The second is the interval used for the output and calibration of the model. The time base of a model is related on the one hand to the type of applications for which the simulated data are used, and on the other hand to the structure and complexity of the model. The latter may be represented by the number of parameters employed to specify the operation of the model. Using data typical to relatively small watersheds in a semiarid climate, the interaction between the complexity of a series of models and the time bases used by them was studied. This included the effects of the two factors, time base and complexity, on the values of the optimal parameters, prediction of mean annual flow, and general performance of the models. The main conclusion is that if the acceptable time base is longer, the model can be less complex needing fewer parameters. There is also an advantage in using a time base comprising a shorter input time interval and a longer output time interval.  相似文献   

8.
ABSTRACT: A two-layered confined-unconfined numerical model for flow and mass transport is developed for the San Jacinto Basin. The model structure is determined by the geological structure of the Basin and model parameters are calibrated using 20 years of historical records. The total number of historical head observations used for the flow model calibration is 1,117 and the total number of the estimated parameters is 91. The two-layered transport model is also calibrated using historical water quality records. Sensitivity analysis of the flow model shows that only 68 parameters (out of a total of 91) are relatively sensitive and reliable. However, the unreliable parameters (23 of them) are found to be insensitive and thus not significant to the prediction and management of conjunctive use of surface water and ground water. The developed flow model has been used to study the two proposed artificial recharge scenarios for the San Jacinto Basin. We have found that during a relatively dry condition, an artificial recharge rate of 80 acre-ft/day can be achieved during the recharge period October through January. However, for a relatively wet condition, only 80 percent of the proposed rate can be effectively stored in the Basin during these months.  相似文献   

9.
ABSTRACT: The unique characteristics of the hydrogeologic system of south Florida (flat topography, sandy soils, high water table, and highly developed canal system) cause significant interactions between ground water and surface water systems. Interaction processes involve infiltration, evapotranspiration (ET), runoff, and exchange of flow (seepage) between streams and aquifers. These interaction processes cannot be accurately simulated by either a surface water model or a ground water model alone because surface water models generally oversimplify ground water movement and ground water models generally oversimplify surface water movement. Estimates of the many components of flow between surface water and ground water (such as recharge and ET) made by the two types of models are often inconsistent. The inconsistencies are the result of differences in the calibration components and the model structures, and can affect the confidence level of the model application. In order to improve model results, a framework for developing a model which integrates a surface water model and a ground water model is presented. Dade County, Florida, is used as an example in developing the concepts of the integrated model. The conceptual model is based on the need to evaluate water supply management options involving the conjunctive use of surface water and groundwater, as well as the evaluation of the impacts of proposed wellfields. The mathematical structure of the integrated model is based on the South Florida Water Management Model (SFWMM) (MacVicar et al., 1984) and A Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW) (McDonald and Harbaugh, 1988).  相似文献   

10.
ABSTRACT: Time series models of the ARMAX class were investigated for use in forecasting daily riverflow resulting from combined snowmelt/rainfall. The Snowmelt Runoff Model (Martinec-Rango Model) is shown to have a form similar to the ARMAX model. The advantage of the ARMAX approach is that analytical model identification and parameter estimation techniques are available. In addition, previous forecast errors can be included to improve forecasts and confidence limits can be estimated for the forecasts. Diagnostic checks are available to determine if the model is performing properly. Finally, Kalman filtering can be used to allow the model parameters to vary continuously to reflect changing basin runoff conditions. The above advantages result in improved flow forecasts with fewer model parameters.  相似文献   

11.
Abstract: This study incorporates the newly available Gravity Recovery and Climate Experiment (GRACE) water storage data and water table data from well logs to reduce parameter uncertainty in Soil and Water Assessment Tool (SWAT) calibration using a SUFI2 (sequential uncertainty fitting) framework for the Lower Missouri River Basin. Model evaluations are performed in multiple stages using a multiobjective function consisting of multisite streamflow and GRACE water storage data as well as a groundwater component. Results show that (1) a model calibrated with both streamflow and GRACE data simultaneously can maintain the water balance for the whole basin, but may improperly partition surface flow and base flow. Additional inclusion of the groundwater constraint can significantly improve the model performance in groundwater hydrological processes. In our case, the estimation of specific yield of shallow aquifers has been increased to 10?2 from previous much underestimated level (<10?3). (2) The daily streamflow data are needed to confine the parameters related to water flow in channels such as the Manning’s coefficient, which are less sensitive to the monthly simulations. (3) Parameters are nonuniformly sensitive for different goal variables, and thus, proper specification of a prior distribution of parameters may be the key factor for global optimization algorithms to obtain stable and realistic model performance.  相似文献   

12.
The cost of developing groundwater resources in northeastern Illinois from 198cL2020 is estimated for the purpose of providing a basis for comparing alternative sources. Demands for each township in the study area are estimated at 10-year increments and are satisfied, where the supply is sufficient, in such a way as to minimize the cost subject to constraints on supply. Sources of water are two shallow aquifers with known potential yields and a series of deep aquifers treated as a single unit and modeled on a digital computer. For each township the costs of wells, pumps, power and rehabilitation is estimated for each aquifer on a per million gallons of water per day basis. In addition the cost of groundwater treatment necessary to raise the quality to that of treated Lake Michigan water is considered. Raw water costs are found to vary from 2 to 14 cents per 1000 gallons depending upon the depth to the deep aquifer water. Treated water costs vary from 22 to 53 cents per 1000 gallons, the lower costs applying to the largest users because of the economy of scale. It is found that with proper distribution of pumpage there is sufficient water in storage in the deep aquifers to meet groundwater demands through 2020.  相似文献   

13.
ABSTRACT: Model estimation and prediction of a river flow system are investigated using nonlinear system identification techniques. We demonstrate how the dynamics of the system, rainfall, and river flow can be modeled using NARMAX (Nonlinear Autoregressive Moving Average with eXogenuous input) models. The parameters of the model are estimated using an orthogonal least squares algorithm with intelligent structure detection. The identification of the nonlinear model is described to represent the relationship between local rainfall and river flow at Enoree station (inputs) and river flow at Whitmire (output) for a river flow system in South Carolina.  相似文献   

14.
15.
ABSTRACT: Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri‐County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.  相似文献   

16.
The ability of a watershed model to mimic specified watershed processes is assessed through the calibration and validation process. The Soil and Water Assessment Tool (SWAT) watershed model was implemented in the Beaver Reservoir Watershed of Northwest Arkansas. The objectives were to: (1) provide detailed information on calibrating and applying a multisite and multivariable SWAT model; (2) conduct sensitivity analysis; and (3) perform calibration and validation at three different sites for flow, sediment, total phosphorus (TP), and nitrate‐nitrogen (NO3‐N) plus nitrite‐nitrogen (NO2‐N). Relative sensitivity analysis was conducted to identify parameters that most influenced predicted flow, sediment, and nutrient model outputs. A multi objective function was defined that consisted of optimizing three statistics: percent relative error (RE), Nash‐Sutcliffe Coefficient (RNS2), and coefficient of determination (R2). This function was used to successfully calibrate and validate a SWAT model of Beaver Reservoir Watershed at multi‐sites while considering multivariables. Calibration and validation of the model is a key factor in reducing uncertainty and increasing user confidence in its predictive abilities, which makes the application of the model effective. Information on calibration and validation of multisite, multivariable SWAT models has been provided to assist watershed modelers in developing their models to achieve watershed management goals.  相似文献   

17.
ABSTRACT: Dynamic linear models (DLM) and seasonal trend decomposition (STL) using local regression, or LOESS, were used to analyze the 50‐year time series of suspended sediment concentrations for the Yadkin River, measured at the U.S. Geological Survey station at Yadkin College, North Carolina. A DLM with constant trend, seasonality, and a log10 streamflow regressor provided the best model to predict monthly mean log10 suspended sediment concentrations, based on the forecast log likelihood. Using DLM, there was evidence (odds approximately 69:1) that the log10 streamflow versus log10 suspended sediment concentration relationship has changed, with an approximate 20 percent increase in the log10 streamflow coefficient over the period 1981 to 1996. However, sediment concentrations in the Yadkin River have decreased during the decade of the 1990s, which has been accompanied by a concomitant increase in streamflow variability. Although STL has been shown to be a versatile trend analysis technique, DLM is shown to be more suitable for discovery and inference of structural changes (trends) in the model coefficient describing the relationship between flow and sediment concentration.  相似文献   

18.
Recent developments with respect to transfer function-noise models are reviewed and used to model and forecast quarter-monthly (i.e., near-weekly) natural inflows to the Lac St-Jean reservoir in the Province of Quebec, Canada. The covariate series are rainfall and snowmelt, the latter being a novel derivation from daily rainfall, snowfall and temperature series. It is clearly demonstrated using the residual variance and the Akaike information criterion that modeling is improved as one starts with a deseasonalized ARMA model of the inflow series and successively adds transfer functions for the rainfall and snowmelt series. It is further demonstrated that the transfer function-noise model is better than a periodic autoregressive model of the inflow series. A split-sample experiment is used to compare one-step-ahead forecasts from this transfer function-noise model with forecasts from other stochastic models as well as with forecasts from a so-called conceptual hydrological model (i.e., a model which attempts to mathematically simulate the physical processes involved in the hydrological cycle). It is concluded that the transfer function-noise model is the preferred model for forecasting the quarter-monthly Lac St-Jean inflow series.  相似文献   

19.
ABSTRACT: The National Oceanic and Atmospheric Administration is developing a river forecast system for the Nile River in Egypt. The river forecast system operates on scientific work stations using hydrometeorological models and software to predict inflows into the high Aswan Dam and forecast flow hydrographs at selected gaging locations above the dam The Nile Forecasting System (NFS) utilizes satellite imagery from the METEOSAT satellite as the input to the forecast system. Satellite imagery is used to estimate precipitation over the Blue Nile Basin using five different techniques. Observed precipitation data and climatic statistics are used to improve precipitation estimation. Precipitation data for grid locations are input to a distributed water balance model, a hill slope routing model, and a channel routing model. A customized Geographic Information System (GIS) was developed to show political boundaries, rivers, terrain elevation, and gaging network. The GIS was used to develop hydrologic parameters for the basin and is used for multiple display features.  相似文献   

20.
ABSTRACT: Overlapping and adjacent ground water investigations are common in areas where aquifers are threatened by industrial development. In the Indianapolis area in Marion County, Indiana, a patchwork of ground water flow models have been used during the past 20 years to evaluate ground water resources and to determine the effects of local contamination. In every case these ground water models were constructed from scratch. Site specific finite difference grids or finite element meshes inhibit the direct reuse of input data when the area of interest shifts. Because the aquifer is not discretized into a grid or mesh with analytic element models, there are unique opportunities for direct reuse of model input data. In two applications of this principle we illustrate how the newly emerging analytic element method allows a fairly straightforward reuse of model input data from previous models in the same general area. In analytic element models of Central Indiana, streams and their tributaries are represented in different resolutions. Input data items of several modeling studies are stored and cataloged on disk in such a manner that they can be selectively retrieved by a data management program PREPRO. In this manner, a new ground water model can be set up quickly with input data which have been previously defined and tested during model calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号