首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Zhu Y  Liu H  Xi Z  Cheng H  Xu X 《Chemosphere》2005,60(6):770-778
Concentrations of HCH (hexachlorocyclohexane) and DDT (Dichlorodiphenyltrichloroethane) were determined in shallow subsurface (5-30 cm depth) and deep soil layers (150-180 cm depth) from the outskirts of Beijing, China. Concentrations of total HCHs (including alpha, beta, gamma, delta-isomers) and total DDTs (including p,p'-DDT, p,p'-DDE, p,p'-DDD, o,p'-DDT) in shallow subsurface soils ranged from 1.36 to 56.61 ng/g dw (median 5.25 ng/g), and from 0.77 to 2178 ng/g (median 38.66 ng/g), respectively, and those in the deeper layers were approximately an order of magnitude less. The spatial distribution of HCHs and DDTs reflected the known historical usage of these pesticides. No correlation between the concentrations of pesticides and soil organic matter content or clay content can be found. The factors affecting residue levels and compositions of DDT and HCH were discussed. The contour maps of beta/gamma ratios and DDT/DDE ratios for both the shallow subsurface and deep layer soils were drawn.  相似文献   

2.
Tonghui River, a typical river in Beijing, People's Republic of China, was studied for its water and sediment quality, by determining the levels of 16 polycyclic aromatic hydrocarbons (PAHs), 12 polychlorinated biphenyls (PCBs) and 18 organochlorine pesticides in water and sediment samples. Total PAHs, PCBs and organochlorine pesticides concentrations in water varied from 192.5 to 2651 ng/l, 31.58-344.9 ng/l and 134.9-3788 ng/l, respectively. The total PAHs, PCBs and organochlorine pesticides concentrations in surficial sediments were 127-928 ng/g, 0.78-8.47 ng/g and 1.79-13.98 ng/g dry weight, respectively. The results showed that the concentration of these selected organic pollutants in sediment was higher than those in surface water. It may be due to the fact that organic hydrophobic pollutants tend to stay in the sediments. The PAHs were dominated by 2-, 3-ring components in water samples and by 3- and 4-ring compounds in sediment. For organochlorines, alpha-HCH, delta-HCH, Heptachlor, Endosulfan II, DDT are the major organochlorine pesticides in water while Heptachlor, Dieldrin and DDE composed of 95% of total organochlorine pesticides in sediment. For HCHs (HCHs=alpha-HCH+beta-HCH+gamma-HCH+delta-HCH), the predominance of alpha-HCH of total HCHs were clearly observed in water and sediment. PCB18, PCB31 and PCB52 were predominant in water, on average these compounds collectively accounted for 67% of total PCBs. But in sediment, the predominant compounds were PCB28, PCB31 and PCB153, which accounted for 71% of total PCBs in sediment. The levels of micro pollutants in our study areas were compared with other studies.  相似文献   

3.
Detailed analyses of persistent organic pollutants (POPs) such as organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) isomers (HCHs), dichlorodiphenyltrichloro ethane (DDT) and its metabolites (DDTs) and congeners of polychlorinated biphenyls (PCBs) in soil and surface water from the northeastern São Paulo, Brazil allowed the evaluation of the contamination status, distribution and possible pollution sources. The pesticides and PCBs demonstrated markedly different distributions, reflecting different agricultural, domestic and industrial usage in each region studied. The ranges of HCH, DDT, and PCBs concentrations in the soil samples were 0.05–0.92, 0.12–11.01, 0.02–0.25 ng g−1 dry wt, respectively, and in the surface water samples were 0.02–0.6, 0.02–0.58 and 0.02–0.5 ng l−1, respectively. Overall elevated levels of DDT and PCB were recorded in region 2, a site very close to melting, automotive batteries industries, and agricultural practice regions. High ratios of metabolites of DDT to DDT isomers revealed the recent use of DDT in this environment. The sources of contamination are closely related to human activities, such as domestic and industrial discharge, street runoff, agricultural pesticides and soil erosion, due to deforestation as well as atmospheric transport.  相似文献   

4.
《Chemosphere》2007,66(11):1949-1958
Detailed analyses of persistent organic pollutants (POPs) such as organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) isomers (HCHs), dichlorodiphenyltrichloro ethane (DDT) and its metabolites (DDTs) and congeners of polychlorinated biphenyls (PCBs) in soil and surface water from the northeastern São Paulo, Brazil allowed the evaluation of the contamination status, distribution and possible pollution sources. The pesticides and PCBs demonstrated markedly different distributions, reflecting different agricultural, domestic and industrial usage in each region studied. The ranges of HCH, DDT, and PCBs concentrations in the soil samples were 0.05–0.92, 0.12–11.01, 0.02–0.25 ng g−1 dry wt, respectively, and in the surface water samples were 0.02–0.6, 0.02–0.58 and 0.02–0.5 ng l−1, respectively. Overall elevated levels of DDT and PCB were recorded in region 2, a site very close to melting, automotive batteries industries, and agricultural practice regions. High ratios of metabolites of DDT to DDT isomers revealed the recent use of DDT in this environment. The sources of contamination are closely related to human activities, such as domestic and industrial discharge, street runoff, agricultural pesticides and soil erosion, due to deforestation as well as atmospheric transport.  相似文献   

5.
The distribution and concentration of some organochlorine pesticides (OCPs) in the soil around a pesticide factory in Zibo, China, were examined, including dichlorodiphenyltrichloroethane (DDT) and its metabolites, isomers of hexachlorocyclohexane (HCH) and endosulfan (ENDO). The results showed that the OCPs concentrations were extraordinary high in this region. The concentrations of DDTs, HCHs, and ENDO were measured in the range of 0.775–226.711, 0.248–42.838, and 0.081–1.644 mg kg?1, respectively. DDT and its isomers were identified to be the dominate contaminants in most of the sampling sites. In the vertical direction, the distribution pattern of the total OCPs was in order of DDTs, HCHs, and ENDO in the 0–20 cm, but in 20–40 and 40–60 cm the trends were unobvious. Although no recent input occurred in most areas, the residues of OCPs remained in deep soil due to their persistence. Unlike ENDO, DDTs and HCHs appeared to have the similar property in terms of not only the migration pattern in soil, but also the relationship to the same dominant impact factor (i.e. organic matter). DDTs and HCHs were affected positively by the organic matter, whereas ENDO was affected negatively. Due to the interrelationship among various impact factors, the spatial distribution of pesticides in the soil was considered to be a combined result.  相似文献   

6.
Topsoil samples from 56 sites around the Guanting Reservoir, China, were measured for HCH and DDT concentrations. The total soil HCH content (including alpha-, beta-, gamma-, and delta-isomers) in these soil samples ranged from 0 to 7.33 ng x g(-1), with a mean of 0.69 ng x g(-1). These levels were considerably lower than those of the total DDT soil contents (including pp'-DDE, pp'-DDD, op'-DDT, and pp'-DDT), which ranged from 0 to 76.01 ng x g(-1), with a mean of 9.46 ng x g(-1). DDT was also found to be the major pollutant in the soil samples, accounting for approximately 93% of the total organochlorine pesticide (OCP) contents. Several environmental factors including land use, soil texture, soil taxonomy, and microbial biomass were considered to be responsible for the OCP levels observed. The data provide some insight into the effects of environmental conditions such as soil formation, agricultural cultivation, nutrient enrichment, and other anthropogenic activities on the degradation of OCPs in soils. Although the OCP residues currently are below the maximum limits set for use on agricultural land in China, and only rarely would such levels pose significant ecological concern, OCPs are highly persistent in soil and bioaccumulative. The data provided in this study are considered crucial for reservoir remediation, especially since the Guanting Reservoir will serve as one of the main drinking water sources for Beijing in the foreseeable future.  相似文献   

7.
Organochlorine pesticides in soil profiles from Tianjin, China   总被引:17,自引:0,他引:17  
Wang X  Piao X  Chen J  Hu J  Xu F  Tao S 《Chemosphere》2006,64(9):1514-1520
Soil cores were collected from soils at five sites in Tianjin area for the determination of hexachlorocyclohexane isomers (HCHs, including alpha-HCH, beta-HCH, gamma-HCH and delta-HCH), dichlorodiphenyltrichloroethane and metabolites (DDXs, including p,p'-DDT, p,p'-DDE and p,p'-DDD) and total organic carbon (TOC). The levels and vertical distributions of HCHs and DDXs are studied. Results show that the application of pesticides in the past years was the major contributor of HCHs and DDXs accumulation in the sampling areas. Significant positive correlations were seen between the residual and application amounts of HCHs and DDXs. Wastewater irrigation did not bring a significant contribution of HCHs or DDXs into the soils. HCHs and DDXs concentrations peak at the surface and decline in soil profile with depth, while fluctuations were observed in the plow layers of some cultivated soils caused by frequent cultivation activities and batch irrigation. Positive correlations were observed between the contents of TOC and HCHs and DDTs. Although the amounts of HCHs application in all sampling sites are larger than DDXs, at surface and near surface layers of most sampling sites, the concentrations of summation operatorHCHs are lower than summation operatorDDXs. The composition of DDXs in the applied pesticides and sampled soils indicates that there is no recent DDT input at the sample areas.  相似文献   

8.
Residues of organochlorine pesticides in Hong Kong soils   总被引:22,自引:0,他引:22  
Zhang HB  Luo YM  Zhao QG  Wong MH  Zhang GL 《Chemosphere》2006,63(4):633-641
It was short of research on the organochlorine pesticides (OCPs) residues in the soils of Hong Kong. Sixty-six representative soil samples were collected from the 46 sites covering five types of land uses in Hong Kong. Hexachlorohexanes (HCH) and 7 Stockholm Convention OCPs were analyzed by gas chromatograph (GC) equipped with a Nickel 63 electronic capture detector (muECD). The results presented that HCH and 5 Stockholm Convention pesticides were detected in Hong Kong soils although the detectable ratio varies to a great extent. The concentration sequence of the five detectable OCPs was HCH > dichlorodiphenyltrichloroethane (DDT) > hexachlorobenzene (HCB) approximately = Endrin > alpha-endosulfan. Among the OCPs and their homologues or isomers, beta-HCH and p,p'-DDE were the two predominant substances according to the concentrations and detectable ratios, concentrations of which in soils were averagely 6.12 microg kg(-1) and 0.41 microg kg(-1) respectively. Soil horizon samples of 0-10 cm, 10-30 cm and >30 cm depth were selected from nine soil profiles to demonstrate the depth distributions of DDT and HCH in soil profiles. Concentrations of HCH tended to increase gradually from the topsoil to bottom layer while the lowest concentration of DDT is usually found in the subsoil (10-30 cm) in most sampling sites. In addition, close correlations of pH(KCl) and total organic carbon (TOC) with HCH indicated an effect on the residues of HCH caused by these two soils properties, but such relationships were not found with DDT or other OCPs.  相似文献   

9.
Thirty-two topsoil samples were collected to analyze the residue levels of organochlorine pesticides (OCPs) in topsoil of arid and semiarid areas of northwest China in 2011. Results showed that DDTs were the dominant contaminants with a mean concentration of 12.52 ng/g. The spatial distribution characteristics indicated that α-hexachlorocyclohexanes (HCHs) were mainly used in rural sites, whereas hexachlorobenzene (HCB) and endosulfan were detected mostly in urban areas. DDTs, heptachlor, and chlordane were found almost equally in both urban and rural areas. Source identification revealed that the current levels of HCHs in soils were attributable to the residues from their historical use and fresh usage of lindane (γ-HCH). DDTs were mainly from historical use and fresh usage of dicofol, and HCB was emitted from the chemical industry. It was also found that the current soil levels of heptachlor were mainly from its historical usage, endosulfan from fresh input, and chlordane from long-range atmospheric transport, respectively. The noncarcinogenic health risk assessment with a model was also conducted using USEPA standards for adults and children. Results indicated that health risk under nondietary exposure to OCPs decreased in the sequence of ΣDDT?>?ΣHCH?>?HCB?>?Σheptachlor?>?Σendosulfan?>?Σchlordane. According to the reference dose from the USEPA, the health risk under nondietary exposure to OCPs in the soil samples was at a relatively safe level.  相似文献   

10.
Organochlorine pesticides (OCPs), a potential threat to ecosystems and human health, are still widely residual in the environment. The residual levels of OCPs in the water and gas phase were monitored in Lake Chaohu, a large Chinese lake, from March 2010 to February 2011. Nineteen types of OCPs were detected in the water with a total concentration of 7.27?±?3.32 ng/l. Aldrin, DDTs and HCHs were the major OCPs in the water, accounting for 38.3 %, 28.9 % and 23.6 % of the total, respectively. The highest mean concentration (12.32 ng/l) in the water was found in September, while the lowest (1.74 ng/l) was found in November. Twenty types of gaseous OCPs were detected in the atmosphere with a total concentration of 542.0?±?636.5 pg/m3. Endosulfan, DDTs and chlordane were the major gaseous OCPs in the atmosphere, accounting for 48.9 %, 22.5 % and 14.4 % of the total, respectively. The mean concentration of gaseous OCPs was significantly higher in summer than in winter. o,p′-DDE was the main metabolite of DDT in both the water and gas phase. Of the HCHs, 52.3 % existed as β-HCH in the water, while α-HCH (37.9 %) and γ-HCH (30.9 %) were dominant isomers in the gas phase. The average fluxes were ?21.11, ?3.30, ?152.41, ?35.50 and ?1314.15 ng/(m2?day) for α-HCH, γ-HCH, HCB, DDT and DDE, respectively. The water–gas exchanges of the five types of OCPs indicate that water was the main potential source of gaseous OCPs in the atmosphere. A sensitivity analysis indicated that the water-gas flux of α-HCH, γ-HCH and DDT is more vulnerable than that of HCB and DDE to the variation of the parameters. The possible source of the HCHs in the water was from the historical usage of lindane; however, that in the air was mainly from the recent usage of lindane. The technical DDT and dicofol might be the source of DDTs in the water and air.  相似文献   

11.
Orchards (n=13) were sampled as part of a larger survey investigating agrichemical residues (pesticides and trace elements) in cropping soils in the Auckland region, New Zealand. SigmaDDT concentrations in orchard soils ranged from <0.03 to 24.41 mg kg(-1). DDT (o,p'- and p,p'-) comprised at least 40% of the SigmaDDT residues in 67% of orchards in which DDT residues were detected. There was a highly significant negative correlation (-0.924, P<0.001) between copper concentration (21-490 mg kg-1) and the ratio of DDE:DDT (0.4-5.2) in pip and stonefruit orchard soils. In further investigations involving five pip and stone fruit orchard sites and one grazing paddock it was found that soil respiration and the ratio of soil microbial carbon to soil carbon (%Cmic/Org-C) in orchard soils decreased with increasing copper concentration. These findings are consistent with the conclusion that elevated soil copper concentrations in pip and stone fruit orchard soils in the Auckland region may have reduced the ability of the indigenous soil microbial community to degrade DDT to DDE  相似文献   

12.
Pot experiments were conducted to examine the effects of various fertilizers, as well as soil dilution treatments on the dynamics of soil-borne DDTs [sum of dichlorodiphenyltrichloroethane (DDT), chlorodiphenyldichloroethylene (DDE) and di- chlorodiphenyldichloroethane (DDD)] and hexachlorocyclohexanes (HCHs, sum of α-HCH, β-HCH, γ-HCH and δ-HCH) and their subsequent impacts on the uptake of DDTs and HCHs by a test plant. The results show that the soil residual DDTs and HCHs concentrations in the iron-rich fertilizer-treated soil were significantly lower than those in other fertilizer-treated soils. There was a close relationship between the soil residual DDTs and the plant tissue DDTs. This suggests that the uptake rate of DDTs by the plant was dependent on the concentration of soil-borne DDTs. A less close relationship between soil residual HCHs and plant tissue HCHs was also observed. Dilution of pesticide-contaminated soil with the non-contaminated soil not only physically reduced the concentration of pesticides in the soil but also enhanced the loss of soil-borne pesticides, possibly through the improvement of soil conditions for microbial degradation. Soil dilution had a better effect on promoting the loss of soil-borne HCHs, relative to soil-borne-DDTs. The research findings obtained from this study have implications for management of heavily contaminated soils with DDTs and HCHs. Remediation of DDTs and HCHs-contaminated soils in a cost-effective way can be achieved by incorporating treatment techniques into conventional agricultural practices. Applications of iron-rich fertilizer and soil dilution treatments could cost-effectively reduce soil-borne DDTs and HCHs, and subsequently the uptake of these organochlorine pesticides by vegetables.  相似文献   

13.
Pot experiments were conducted to examine the effects of various fertilizers, as well as soil dilution treatments on the dynamics of soil-borne DDTs [sum of dichlorodiphenyltrichloroethane (DDT), chlorodiphenyldichloroethylene (DDE) and di- chlorodiphenyldichloroethane (DDD)] and hexachlorocyclohexanes (HCHs, sum of α-HCH, β-HCH, γ-HCH and δ-HCH) and their subsequent impacts on the uptake of DDTs and HCHs by a test plant. The results show that the soil residual DDTs and HCHs concentrations in the iron-rich fertilizer-treated soil were significantly lower than those in other fertilizer-treated soils. There was a close relationship between the soil residual DDTs and the plant tissue DDTs. This suggests that the uptake rate of DDTs by the plant was dependent on the concentration of soil-borne DDTs. A less close relationship between soil residual HCHs and plant tissue HCHs was also observed. Dilution of pesticide-contaminated soil with the non-contaminated soil not only physically reduced the concentration of pesticides in the soil but also enhanced the loss of soil-borne pesticides, possibly through the improvement of soil conditions for microbial degradation. Soil dilution had a better effect on promoting the loss of soil-borne HCHs, relative to soil-borne-DDTs. The research findings obtained from this study have implications for management of heavily contaminated soils with DDTs and HCHs. Remediation of DDTs and HCHs-contaminated soils in a cost-effective way can be achieved by incorporating treatment techniques into conventional agricultural practices. Applications of iron-rich fertilizer and soil dilution treatments could cost-effectively reduce soil-borne DDTs and HCHs, and subsequently the uptake of these organochlorine pesticides by vegetables.  相似文献   

14.
Zhang ZL  Hong HS  Zhou JL  Huang J  Yu G 《Chemosphere》2003,52(9):1423-1430
Persistent organochlorine compounds were analyzed in surface water, porewater and surficial sediment samples from Minjiang River Estuary, which is the first large river in Fujian Province, Southeast of China. The total concentrations of 18 organochlorine pesticides were 214.4-1819, 4541-13,699 ng/l, 28.79-52.07 ng/g in surface water, porewater and sediments (dry weight) respectively, and those of 21 polychlorinated biphenyls (PCBs) in the three phases were: 203.9-2473, 3192-10,855 ng/l, 15.14-57.93 ng/g respectively. The results showed that the concentrations of these selected organochlorine pesticides and PCBs in porewater were higher than those in surface water. It may be due to the fact that these organic hydrophobic pollutants tend to stay in the sediments, and then re-suspend from the sedimentary phase to the upper water. We have analyzed the distribution characteristics of individual organochlorine pesticide components and PCBs, and found that alpha-HCH, DDE, Heptachlor, Endosulfan II, Methoxychlor were the most common organochlorine pesticides contaminants. Considering the groups of HCHs (HCHs=alpha-HCH+beta-HCH+gamma-HCH+delta-HCH) and DDTs (DDTs=DDT+DDD+DDE), the predominance of beta-HCH, DDE in all water, porewater and sediment samples was clearly observed. This observation suggested that beta-HCH was resistant to biodegradation and the DDTs had been transformed to its metabolites, DDE and DDD, of which DDE that was more un-degradable. The PCB congeners containing 3-6 chlorines had the great preponderance in the three phase. These results were compared with those present in other estuaries and harbors. A risk assessment was evaluated for the persistent organic pollutants in the Minjiang River Estuary.  相似文献   

15.
This study determined concentrations of polychlorinated biphenyls (PCBs) and organochlorine compound (OC) pesticides in the milk samples of women from the general population in four locations of Indonesia. The most prevalent residues of OCs were DDTs, PCBs and hexachlorocyclohexane isomers (HCHs), whereas other OCs such as chlordane compounds (CHLs), tris(4-chlorophenyl)methane and hexachlorobenzene were lower. The levels of OCs varied between locations and individuals, with DDTs higher in suburban and rural areas than urban localities, may be due to the differences in food habits and sources between the individuals and locations. Data from Purwakarta site indicated continuing DDT exposure, which may confirm recent usage of DDT in Indonesia. A positive correlation was observed between concentration of OCs in human milk and age of mothers, primiparas women having higher OCs than multiparas, suggesting these parameters play an important role influencing the OC burdens in lactating women. Some individuals accumulated DDTs and HCHs in breast milk close to or even higher than the TDI (tolerable daily intake) guidelines proposed by Health Canada.  相似文献   

16.
Chen L  Ran Y  Xing B  Mai B  He J  Wei X  Fu J  Sheng G 《Chemosphere》2005,60(7):879-890
We investigated contents, distribution and possible sources of PAHs and organochlorine pesticides (Ops) in 43 surface and subsurface soils around the urban Guangzhou where variable kinds of vegetables are grown. The results indicate that the contents of PAHs (16 US EPA priority PAHs) range from 42 to 3077 microg/kg and the pollution extent is classified as a moderate level in comparison with other investigations and soil quality standards. The ratios of methylphenanthrenes to phenanthrene(MP/P), anthracene to anthracene plus phenanthrene (An/178), benz[a]anthracene to benz[a]anthracene plus chrysene (BaA/228), indeno[1,2,3-cd]pyrene to indeno[1,2,3-cd]pyrene plus benzo[ghi]perylene (In/In+BP) suggest that the sources of PAHs in the soil samples are mixed with a dominant contribution from petroleum and combustion of fossil fuel. The correlation analysis shows that the PAHs contents are significantly related to total organic carbon contents (TOC) (R2=0.75) and black carbon contents (BC) (R2=0.62) in the soil samples. Dichlorodiphenyltrichloroethane and metabolites (DDTs) and hexachlorocyclohexanes and metabolites (HCHs) account largely for the contaminants of OPs. The concentrations of DDTs range from 3.58 to 831 microg/kg and the ratios for DDT/(DDD+DDE) are higher than 2 in some soil samples, suggesting that DDT contamination still exists and may be caused by its persistence in soils and/or impurity in the pesticide dicofol. The concentrations of HCHs are 0.19-42.3 microg/kg.  相似文献   

17.
This paper reports the release behavior of two triazines (atrazine and simazine) in stabilised soils from a pesticide-contaminated site in South Australia. The soils were contaminated with a range of pesticides, especially with triazine herbicides. With multiple extractions of each soil sample with deionised water (eight in total), 15% of atrazine and 4% of simazine residues were recovered, resulting in very high concentrations of the two herbicides in leachate. The presence of small fractions of surfactants was found to further enhance the release of the residues. Methanol content up to 10% did not substantially influence the concentration of simazine and atrazine released. The study demonstrated that while the stabilisation of contaminated soil with particulate activated carbon (5%) and cement mix (15%) was effective in locking the residues of some pesticides, it failed to immobilise triazine herbicides residues completely. Given the higher water solubility of these herbicides than other compounds more effective strategies to immobilise their residues is needed.  相似文献   

18.
Darko G  Akoto O  Oppong C 《Chemosphere》2008,72(1):21-24
Some organochlorine pesticide residues in tilapia fish (Tilapiazilli), sediment and water samples from Lake Bosomtwi (the largest natural lake in Ghana) were determined to find out the extent of pesticide contamination and accumulation in the lake. The extracted residues were analyzed on a micro-capillary gas chromatograph equipped with electron capture detector. DDE (p,p'-1,1-dichloro-2,2-bis-(4-chlorophenyl)ethylene) was the predominant residue in all the samples analyzed; detected in 82% of water samples, 98% of sediment samples and 58% of fish samples at concentrations of 0.061+/-0.03 ng g(-1), 8.342+/-2.96 ng g(-1) and 5.232+/-1.30 ng g(-1), respectively. DDT (p,p'-1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane) was detected in 78% at a mean concentration 0.012+/-0.62 ng g(-1) of water samples analyzed. The mean concentrations of DDT in sediments and fish were 4.41+/-1.54 ng g(-1) and 3.645+/-1.81 ng g(-1), respectively. The detection of lower levels of DDT than its metabolite, DDE, in the samples implies that the presence of these contaminants in the lake is as result of past usage of the pesticides.  相似文献   

19.
The residues of oragnochlorine pesticides (OCPs) in 62 sediments from Kyeonggi Bay and nearby areas in the west coast of Korea were determined. The concentrations of chlordanes (CHLs) and DDTs showed a distinctive gradient of contamination between inner and outer sites of Incheon North Harbor (INH), whereas hexachlorocyclohexanes (HCHs) were uniformly distributed at most sites studied. The distribution of CHLs and DDTs was strongly correlated with total organic carbon contents in sediments while HCH residue levels were independent. Relationship between contaminant's concentration and environmental factors was analyzed by principal component analysis. Distribution patterns of T-CHLs, T-DDTs, and TOC were similar while those of T-HCHs, mud content, and grain size were similar. The notable contamination by CHLs and DDTs was found in INH where these levels were one or two orders of magnitude higher than other sites. The dominant OCPs in sediments were beta-HCH among HCH compounds, trans-chlordane among CHL compounds, and p,p'-DDD among DDT compounds. The higher concentrations and compositional pattern of OCPs in INH sediments indicate that INH is in the vicinity of the source.  相似文献   

20.
Simulating the temporal changes of OCP pollution in Hangzhou, China   总被引:4,自引:0,他引:4  
Cao HY  Liang T  Tao S  Zhang CS 《Chemosphere》2007,67(7):1335-1345
A dynamic fugacity model was applied to simulate the changes of contents and transfer fluxes of hexachlorocyclohexane (HCHs) and dichloro-diphenyl-trichloroethane (DDTs) from 1950s in the environment of Hangzhou, China. The receptors are composed of air, surface water, soils, sediment and biota compartments. The model provides a method to combine loadings of HCHs and DDTs from various sources with a series of physical-chemical processes to estimate concentrations and transport fluxes of HCHs and DDTs. Model results suggested that the calculated concentrations were in line with the observed ones. The highest contents of HCH and DDT in the environment of study area were 523 t and 471 t before 1983, among which about 80.7% HCHs and 93.2% DDTs remained in the soil compartment. From 1984 to now, contents of HCHs and DDTs had decreased to about 0.07% and 0.40% of their highest amount (before 1983), and only about 0.001% and 0.014% will expect to be left in 2020 in the study area according to the model prediction. Before 1983, the main transfer fluxes of HCHs were deposition from air to soil, runoff from soil to water and diffusion from soil to air, but for DDTs the main transfer fluxes were deposition from air to soil and water, and transfer from water to sediment. From 1984 to now, runoff from soil to water and transfer from water to sediment became the dominant processes. Although a large amount of HCHs and DDTs had been applied to the study area, their residue levels in the soils were much lower than those in North China (had lesser HCHs and DDTs application than in South China) at present time, and close to other locations of South China (had similar HCHs and DDTs application level). It can be attributed to the high precipitation and temperature that enhances the processes of wet deposition, evaporation and degradation of OCPs. Sensitivities of the input parameters to the calculated concentrations were evaluated using coefficient-of-variation normalized sensitivity coefficients. The model was also subjected to uncertainty analyses using a Monte Carlo simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号