首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transfer of 90Sr to rice plants following its acute ground deposition was examined experimentally in a greenhouse. Lysimeters were flooded after being filled with the soil monoliths from 12 paddy fields. A solution of 90Sr was applied to the standing water in the flooded lysimeters at the pre-transplanting stage or booting stage. Applied 90Sr was mixed with the topsoil only after the pre-transplanting application (PTA). The transfer was quantified with the areal transfer factor (TF(a), m2 kg(-1)-dry) defined as the ratio of the plant concentration to the initial ground deposition. In the PTA, the first-year TF(a) values in the 12 soils were in the range of 8.2 x 10(-3) -2.1 x 10(-2) and 1.7 x 10(-4) -3.6 x 10(-4) for the straws and hulled seeds, respectively. The TF(a) values from the booting-stage application (BSA) were higher than those from the PTA by a factor of up to four. The ratios of the seed TF(a) to the straw TF(a) were, on the whole, higher in the BSA. The 90Sr TF(a) in the PTA was negatively correlated with the soil pH and, to a lesser degree, the exchangeable Ca content. In the second year, the TF(a) in the PTA reduced to 53-90% of that in the first year. A more significant reduction, in general, occurred in a sandier soil. Based on the four consecutive years' transfer data, an overall half-time of the 90Sr TF(a) was estimated to be 2.2 years.  相似文献   

2.
BioRUR model has been developed for the simulation of radionuclide (RN) transfer through physical and biological compartments, based on the available information on the transfer of their nutrient analogues. The model assumes that radionuclides are transferred from soil to plant through the same pathways as their nutrient analogues, where K and Ca are the analogues of Cs and Sr, respectively. Basically, the transfer of radionuclide between two compartments is calculated as the transfer of nutrient multiplied by the ratio of concentrations of RN to nutrient, corrected by a selectivity coefficient. Hydroponic experiments showed the validity of this assumption for root uptake of Cs and Sr and reported a selectivity coefficient around 1.0 for both. However, the application of this approach to soil-to-plant transfer raises some questions on which are the effective concentrations of RN and nutrient detected by the plant uptake mechanism. This paper describes the evaluation of two configurations of BioRUR, one which simplifies the soil as an homogeneous pool, and the other which considers that some concentration gradients develop around roots and therefore ion concentrations at the root surface are different from those of the bulk soil. The results show a good fit between the observed Sr transfer and the mechanistic simulations, even when a homogeneous soil is considered. On the other hand, Cs transfer is overestimated by two orders of magnitude if the development of a decreasing K profile around roots is not taken into account.  相似文献   

3.
Pot experiments were carried out in a greenhouse to investigate how effectively the transfer of radiocesium and radiostrontium from soil to Chinese cabbage could be reduced by applying K and Ca simultaneously to the soil. The sources of these elements were KCl and Ca(OH)(2) at agrochemical grades. Varying dosages of K and Ca were tested for an acid loamy soil treated with a mixed solution of (137)Cs and (85)Sr at two different times - 3 d before sowing and 32 d after sowing. For the pre-sowing deposition, the soil-to-plant transfer of (137)Cs decreased sharply with increasing dosages of K and Ca (K/Ca, g m(-2)) from 4.8/46 up to 22.4/215 but the (85)Sr transfer had the greatest reduction at a dosage of 12.8/123. At this dosage, an about 60% reduction occurred for each radionuclide. Plant growth was inhibited from the dosage of 22.4/215, above which all the plants died young. Both dosages of 4.8/46 and 12.8/123 tested following the growing-time deposition produced around 95% reductions for (137)Cs and 50% reductions for (85)Sr. In the second year after the 12.8/123 applications, the effects for (85)Sr were almost the same as in the first year, whereas those for (137)Cs were diminished slightly for the pre-sowing deposition and markedly for the growing-time deposition. Considerably (K) or slightly (Ca) higher doses than 12.8/123 would be allowable for the maximum TF reductions achievable without a growth inhibition.  相似文献   

4.
Radium is one of the prominent potential contaminants linked with industries extracting or processing material containing naturally occurring radionuclides. In this study we investigate if 133Ba and 85Sr can be used as tracers for predicting 226Ra soil-to-plant transfer. Three soil types were artificially contaminated with these radionuclides and transfer to ryegrass and clover was studied. Barium is considered a better tracer for radium than strontium, given the significant linear correlation found between the Ra and Ba-TF. For strontium, no such correlation was found. The relationship between soil characteristics and transfer factors was investigated. Cation exchange capacity, exchangeable Ca+Mg content and soil pH did not seem to influence Ra, Ba or Sr uptake in any clear way. A significant relation (negative power function) was found between the bivalent (Ca+Mg) concentration in the soil solution and the Ra-TF. A similar dependency was found for the Sr and Ba-TF, although less significant.  相似文献   

5.
Transfer factors of 137Cs and 90Sr from soil to trees in arid regions   总被引:2,自引:0,他引:2  
Transfer factors of (137)Cs and (90)Sr from contaminated soil (Aridisol) to olive, apricot trees and grape vines were determined under irrigated field conditions for four successive years. The transfer factors (calculated as Bqkg(-1) dry plant material per Bqkg(-1) dry soil) of both radionuclides varied among tree parts and were highest in olive and apricot fruits. However, the values for (90)Sr were much higher than those for (137)Cs in all plant parts. The geometric mean of the transfer factors in olives, apricots and grapes were 0.007, 0.095 and 0.0023 for (137)Cs and 0.093, 0.13 and 0.08 for (90)Sr, respectively, and were negligible in olive oil for both radionuclides. The transfer factors of both radionuclides were similar to, or in the lower limits of, those obtained in other areas of the world. This could be attributed to differences in soil characteristics: higher pH, lower organic matter, high clay content, and higher exchangeable potassium and calcium.  相似文献   

6.
The feasibility of willow short rotation coppice (SRC) for energy production as a revaluation tool for severely radiocaesium-contaminated land was studied. The effects of crop age, clone and soil type on the radiocaesium levels in the wood were assessed following sampling in 14 existing willow SRC fields, planted on radiocaesium-contaminated land in Sweden following Chernobyl deposition. There was only one plot where willow stands of different maturity (R6S2 and R5S4: R, root age and S, shoot age) and clone (Rapp and L78183 both of age category R5S4) were sampled and no significant differences were found. The soils differed among others in clay fraction (3-34%), radiocaesium interception potential (515-6884 meq kg(-1)), soil solution K (0.09-0.95 mM), exchangeable K (0.58-5.77 meq kg(-1)) and cation exchange capacity (31-250 meq kg(-1)). The soil-to-wood transfer factor (TF) of radiocaesium differed significantly between soil types. The TF recorded was generally small (0.00086-0.016 kg kg(-1)), except for willows established on sandy soil (0.19-0.46 kg kg(-1)). Apart from the weak yet significant exponential correlation between the Cs-TF and the solid/liquid distribution coefficient (R2 = 0.54) or the radiocaesium interception potential, RIP (R2 = 0.66), no single significant correlations between soil characteristics and TF were found. The wood-soil solution 137Cs concentration factor (CF) was significantly related to the potassium concentration in the soil solution. A different relation was, however, found between the sandy Tr?dje soils (CF = 1078.8 x m(K)(-1.83), R2 = 0.99) and the other soils (CF = 35.75 x m(K)(-0.61), R2 =0.61). Differences in the ageing rate of radiocaesium in the soil (hypothesised fraction of bioavailable caesium subjected to fast ageing for Tr?dje soils only 1% compared to other soils), exchangeable soil K (0.8-1.8 meq kg(-1) for Tr?dje soils and 1.5-5.8 meq kg(-1) for the other soils) and the ammonium concentration in the soil solution (0.09-0.31 mM NH4+ for the Tr?dje soils compared to 0.003-0.11 mM NH4+ for the other soils) are put forward as potential factors explaining the higher CF and TF observed for the Tr?dje soils. Though from the dataset available it was not possible to unequivocally predict the Cs-soil-to-wood-transfer, the generally low TFs observed point to the particular suitability for establishment of SRC on radiocaesium-contaminated land.  相似文献   

7.
According to the soil-to-plant transfer concept generally used in dose assessment modeling, the plant uptake of a radionuclide should depend linearly on its concentration in the soil. In order to validate this concept for (90)Sr in a semi-natural ecosystem, plant and soil samples were taken at 100 plots of a 100 x 100 m(2) area within an alpine pasture near Berchtesgaden, Germany. At three plots, the vertical distribution of (90)Sr in the soil was determined in addition. A statistically significant correlation between the soil and plant concentration of (90)Sr was not detectable (Spearman correlation coefficient R=-0.116, p>0.05) within the range of the Sr-concentration covered (15-548 Bq kg(-1) dry soil and 17-253 Bq kg(-1) dry plant material). Thus, the prerequisite of the soil-to-plant transfer concept was not fulfilled for (90)Sr at this site. Organic carbon and total nitrogen were also determined in the soil samples. Both elements were highly correlated (R=0.912, p<0.001), their ratio being C/N=10.9+/-0.7. While C was positively correlated with the (90)Sr concentrations in the soil (R=0.342, p<0.001), negative correlations were observed for the plant concentrations (R=-0.286, p<0.01) and the concentration ratios (R=-0.444, p<0.001) of (90)Sr. These results are compared with those recently obtained for (137)Cs by Bunzl et al. (J Environ Radioactiv 48 (2000) 145).  相似文献   

8.
Two types of soils (Eutric Fluvisol and Chromic Luvisol) and two crops (wheat and cabbage) were investigated for determination of the transfer of 137Cs from soil to plant. Measurements were performed using gamma-spectrometry. Results for the soil characteristics, transfer factors of the radionuclides (TF), and conversion factors (CF) (cabbage/wheat) were obtained. The transfer of 137Cs was higher for Chromic Luvisol for both the plants. Statistically significant dependence of TF of 137Cs on its concentration in soil was established for cabbage. Dependence between K content in the soil and the transfer factor of 137Cs was not found due to the high concentrations of available K. Use of bioconcentration factor (BCF) (ratio between the activity concentration of a radionuclide in a reference plant to its concentration in another plant) is demonstrated and proposed for risk assessment studies.  相似文献   

9.
This paper compares predictions of the foodchain model SPADE with experimental data for the transfer of (134)Cs and (85)Sr to strawberry plants following acute foliar and soil contamination. The transfer pathways considered in this exercise included direct deposition to fruit, leaf-to-fruit, soil-to-leaf and soil-to-fruit transfers. Following foliar contamination, the difference between predicted and measured radionuclide activity values varied between a factor of 0.5-10 for fruit and 4.5-7 for leaf. Following soil contamination, the difference between predicted and measured values varied between a factor of 3-74 for fruit and 32-44 for leaf. In all cases the difference between measured and predicted values was smaller for (85)Sr than (134)Cs. Measured and predicted activities were higher for leaf than fruit. Both measured and predicted (134)Cs concentrations in fruit and leaf are higher when deposition occurs at ripening than at anthesis. These results confirm the need for more data on fruit, even for Cs and Sr, to support models in predicting the transfer of radionuclides to fruit crops. Ongoing research projects funded by the UK Food Standards Agency aim to provide some data on radionuclide transfer to herbaceous, shrub and tree fruits, which will help improve radiological assessment models in order to provide better protection for consumers.  相似文献   

10.
The stable Sr content in the aboveground parts of rice plants at various growth stages, and the distributions of 90Sr and stable Sr in rice plant components, such as polished rice, rice bran, hull, straw and root, at harvest time, were determined. The total Sr content in the aboveground rice plants was dependent on the growth stage and followed the sigmoidal shape of the growth curve. The concentration of 90Sr among the different components of rice plants varied within two orders of magnitude, whereas the 90Sr/Sr concentration ratio had a constant value. Therefore, the translocation rate of 90Sr in rice plants had similar values to that of stable Sr. However, the 90Sr/Sr concentration ratio for the rice plants was different for each study site. Only 0.6% of the total Sr was found in polished rice, while more than 99% was found in the non-edible components, of which 87% was present in the straw. These findings suggest that 90Sr in the non-edible parts could have been transferred to humans through the soil-plant system and/or feed-livestock pathway. The soil-to-plant transfer factor of 90Sr in polished rice was 0.0021 +/- 0.00007, which was two orders of magnitude lower than that in the straw. The percentage of 90Sr removed from the upper soil layer to the aboveground biomass of rice plants at harvest time was calculated as 0.094%. It is possible that approximately 0.1% of the total 90Sr content in the surface soil layer is removed from the soil-plant system by human activities every year.  相似文献   

11.
The aim of the present study was to determine the forms of 137Cs, 90Sr and 239,240Pu occurring in different soil horizons using sequential extraction of samples taken from four sites located along a pollution gradient from the copper-nickel smelter at Monchegorsk in the Kola Peninsula, Russia, and from a reference site in Finnish Lapland in 1997. A selective sequential-leaching procedure was employed using a modification of the method of Tessier, Cambell and Bisson ((1979). Analytical Chemistry, 51, 844-851). For 137Cs the organic (O) and uppermost mineral (E1) layer were studied, for 90Sr and 239,240Pu only the uppermost organic layer (Of). The fraction of 137Cs occurring in readily exchangeable form in the organic layer was about 50% at the reference site and decreased as a function of pollution, being 15% at the most polluted site in the Kola Peninsula. There was a clear positive correlation in the O layer between the distance from the smelter and the percentage of 137Cs extracted in the readily exchangeable fraction (Spearman correlation rsp = 0.7805, p = 0.0001), whereas in the E1 layer no correlation was evident. The distribution of 90Sr in the Of layer was similar at all sites, with the highest amounts occurring in exchangeable form and bound to organic matter, whereas stable Sr showed a somewhat different distribution with the highest amount in the oxide fraction. Most of the 239,240Pu was bound to organic matter. Chemical pollution affected the exchangeable fraction of 239,240Pu, which was about 1% at the most polluted site and 4-6% at the other sites.  相似文献   

12.
A model predicting plant uptake of radiocaesium based on soil characteristics is described. Three soil parameters required to determine radiocaesium bioavailability in soils are estimated in the model: the labile caesium distribution coefficient (kd1), K+ concentration in the soil solution [mK] and the soil solution-->plant radiocaesium concentration factor (CF, Bq kg-1 plant/Bq dm-3). These were determined as functions of soil clay content, exchangeable K+ status, pH, NH4+ concentration and organic matter content. The effect of time on radiocaesium fixation was described using a previously published double exponential equation, modified for the effect of soil organic matter as a non-fixing adsorbent. The model was parameterised using radiocaesium uptake data from two pot trials conducted separately using ryegrass (Lolium perenne) on mineral soils and bent grass (Agrostis capillaris) on organic soils. This resulted in a significant fit to the observed transfer factor (TF, Bq kg-1 plant/Bq kg-1 whole soil) (P < 0.001, n = 58) and soil solution K+ concentration (mK, mol dm-3) (P < 0.001, n = 58). Without further parameterisation the model was tested against independent radiocaesium uptake data for barley (n = 71) using a database of published and unpublished information covering contamination time periods of 1.2-10 years (transfer factors ranged from 0.001 to 0.1). The model accounted for 52% (n = 71, P < 0.001) of the observed variation in log transfer factor.  相似文献   

13.
In 1960 experiments were carried out on the transfer of (90)Sr between soil, grapes and wine. The experiments were conducted in situ on a piece of land limited by two control strips. The (90)Sr migration over the last 40 years was studied by performing radiological and physico-chemical characterizations of the soil on eight 70 cm deep cores. The vertical migration modeling of (90)Sr required the definition of a triple layer conceptual model integrating the rainwater infiltration at constant flux as the only external factor of influence. Afterwards the importance of a detailed soil characterization for modeling was discussed and satisfactory simulation of the (90)Sr vertical transport was obtained and showed a calculated migration rate of about 1.0 cm year(-1) in full agreement with the in situ measured values. The discussion was regarding some of the key parameters such as granulometry, organic matter content (in the Van Genuchten parameter determination), Kd and the efficient rainwater infiltration. Besides the experimental data, simplifying assumptions in modeling such as water-soil redistribution calculation and factual discontinuities in conceptual model were examined.  相似文献   

14.
In this work, soil-to-plant transfer factors of radiocaesium are predicted based on soil properties such as pH, organic matter content, exchangeable K+ and clay content valid for the tropical environments in Bangladesh, China and Japan, and using a previously published model. Due to insufficient data of soil properties in the selected regions, the average values of pH, organic matter content, exchangeable K+ and clay content were taken as the input model parameters within the ranges given for Asia. Nevertheless, a complete set of soil properties of Japanese soils was used to compare the measured and calculated TF values of radiocaesium for radish. The calculated TF values for radiocaesium are comparable with the measured values especially for leafy parts of a plant. However, calculated values for rice, an important crop in Asia are found to overestimate the measured values due to an overestimate of calculated CECs in soils in the selected regions. The empirical parameters used in the model need to be re-evaluated for the specific part of a plant and/or for a variety of different plants. Alternatively, a general conversion factor for each part of a plant and/or for a variety of different plants for a specific region is suggested for tropical environments.  相似文献   

15.
Adequate radioprotection of the environment requires the identification of biomonitors sensitive to the variation of its radionuclide content. Due to the chemical similarities between calcium and strontium, calcified tissues of mammals are considered to be good 90Sr biomonitors. This work considered Cervus elaphus antlers which, being shed annually, can give information about the importance of radiostrontium contamination in an ecosystem in the time period required for the growth of the antler. The samples were collected at various points of W and SW Spain. The mean value of their 90Sr content was (70 ± 43 (S.D.)) Bq/kg d.w., range (16-218) Bq/kg d.w., and the radionuclide was evenly distributed in the different parts of the antler. There was a good correlation between the antlers’ 90Sr content and the 90Sr deposited in the soil. The antlers’ content of 226Ra (from the natural uranium series) and the contents of some stable elements (Ca, Mg, Sr, and K) were also determined. The values for these stable elements were practically constant in the analyzed samples, and the concentrations measured decreased in the following order:Ca » Mg > K > Sr » 90Sr > 226Ra  相似文献   

16.
The effectiveness of a set of soil- and plant-based countermeasures to reduce 137Cs and 90Sr transfer to plants was tested in natural meadows in the area affected by Chernobyl fallout. Countermeasures comprised the use of agricultural practices (disking + ploughing, liming and NPK fertilisation), addition of soil amendments and reseeding with a selection of grass species. Disking + ploughing was the most effective treatment, whereas the K fertiliser doses applied were insufficient to produce a significant increase in K concentration in soil solution. The application of some agricultural practices was economically justifiable for scenarios with a high initial transfer, such as 137Cs-contaminated organic soils. The use of soil amendments did not lead to a further decrease in transfer. Laboratory experiments demonstrated that this was because of their low radionuclide sorption properties. Finally, experiments examining the effect of plant species on radionuclide transfer showed that both transfer and biomass can depend on the plant species, indicating that those with high radionuclide root uptake should be avoided when reseeding after ploughing.  相似文献   

17.
Soil-to-plant transfer factors (TFs) of radiocobalt (60Co) were determined in pot experiments for leafy vegetation, root crops and rice grown in the tropical environment of Bangladesh. Soil properties were also measured to establish a relationship between these properties and TF values. Measured TF values of 60Co for leafy vegetation (average of 2.2 x 10(-2)) were slightly higher than the values obtained for root vegetation (average of 1.6 x 10(-2)). However, TF values obtained for rice (average of 1.17 x 10(-2)) were about a factor of 2 lower than the values obtained for leafy vegetation. TF values of 60Co for leafy vegetation and root crops were observed to decrease with increasing pH, exchangeable K+ and clay content in the soil, even though poor correlations were estimated statistically. No consistent relationship between the TF value for 60Co and organic matter content could be deduced. The results presented here provide a useful addition to existing databases on soil-plant transfer for 60Co, since this information is still rather sparse for tropical environments.  相似文献   

18.
Between 1986 and 1994, a decrease in nonalimentary 90Sr and 137Cs intake and changes in the accessibility of radionuclides in the soil-plant link of their cycle resulted in a 10-to 100-fold decrease in their specific activity (SA) in the bodies of small mammals inhabiting the Chernobyl zone, and a similar decrease was observed in the radionuclide transition factor (TF) in the soil-animal chain. Between 1995 and 2005, no consistent increase or decrease in SA or TF could be revealed against the background of a combined effect of different physicochemical and ecological factors. It is suggested that subsequent changes in the level of radioactive contamination of small mammals will generally reflect only the dynamics of physical 90Sr and 137Cs decay, but, nevertheless, seasonal and local variations in this level will be significant.  相似文献   

19.
Soil-fungus transfer coefficients are usually defined as the ratio between the content of the fruiting bodies and that of the soil. Since, however, the methodology of how to determine the soil content is not firmly established, there exist a variety of definitions in the literature. We analyzed the 137Cs, 90Sr, 40K, and 226Ra content of mushroom and soil samples from two pine-wood ecosystems in Spain. The location of the mycelium in the soil profiles of these ecosystems was determined by means of the ergosterol concentration. The results showed the mycelium to generally be localized in the surface layer of soil (0-5 cm). We also carried out a speciation procedure for this layer of soil to determine the different degrees of association of the radionuclides in the soil. The results led us to propose some variations to the traditional definition used in quantifying radionuclide transfer. With these modifications, we were able to analyze Cs-K competition in several species of mycorrhizal and saprophytic fungi.  相似文献   

20.
The radiological assessment of the impact of nuclear weapon's testing on the Semipalatinsk Test Site (STS) on the local population requires comprehensive site-specific information on radionuclide behaviour in the environment. However, information on radionuclide behaviour in the conditions of the STS is rather sparse and, in particular, there are no data in the literature on parameters of radionuclide transfer from feed to horse products proofed to be important contributors to the internal dose to the local population. The transfer of 137Cs and 90Sr to horse milk and meat was studied under laboratory and field conditions: in controlled experiment with three lactating horses maintained in the Kazakh Agricultural Research Institute, and in field measurements of horse products taken from horses grazing at the Semipalatinsk Test Site. The equilibrium transfer factors from feed to horse milk and meat were estimated to be 0.012 dl(-1) and 0.035 dkg(-1) for (137)Cs and 0.0022 dl(-1) and 0.003 dkg(-1) for (90)Sr, respectively. The biological half-lives were approximated by a sum of two exponentials amounting to 3 (85%) and 15 (15%) days for 137Cs and 3.5 (70%) and 100 (30%) days for 90Sr. The highest 137Cs transfer has been found to be to spleen, followed by lung, heart, muscles, kidneys, intestine, and finally skin and bones. For90Sr, the maximum activity concentration was observed in bones; contamination of other tissues is rather uniform except for liver and intestine with a factor of about 2 higher than muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号