首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
改性沸石对土壤铅、锌赋存形态的影响   总被引:2,自引:0,他引:2  
通过室内土壤培养实验,研究改性沸石对污染土壤中Pb、Zn赋存形态的影响。结果表明,土壤中的Pb主要是以Fe-Mn氧化物结合态存在,土壤Zn主要以残渣态存在。添加天然沸石和改性沸石不同程度地降低土壤酸提取态Pb、Zn的含量,提高土壤残渣态Pb、Zn的含量。与CK处理相比,添加4种沸石导致土壤酸提取态Pb含量降低8.7%~40.3%,土壤酸提取态Zn含量降低10.5%~49.8%(培养1个月)。硝酸钾改性沸石比天然沸石更能显著地降低土壤酸提取态Pb、Zn的含量,而氢氧化钠改性沸石和硝酸钾改性沸石比天然沸石更能显著地降低土壤酸提取态的Zn含量。培养1、2和3月后,不同沸石处理导致土壤残渣态Zn比率分别比CK处理提高14.4%~23.5%、19.6%~23.7%和1.9%~11.1%。研究结果表明,天然沸石经过一定方法改性后,是固定污染土壤Pb、Zn的潜在改良剂。  相似文献   

2.
赤泥对污染土壤Pb、Zn化学形态和生物可给性的影响   总被引:8,自引:0,他引:8  
通过土壤培养实验,研究添加赤泥对污染土壤中Pb、Zn化学形态和生物可给性的影响。结果表明,不同赤泥用量处理均可显著降低土壤中HOAc提取态Pb、Zn含量。当赤泥用量为5%时,培养1、2和3个月后,HOAc提取态Pb含量分别比对照下降62.5%、65.3%和73.5%;HOAc提取态Zn含量分别比对照下降56.7%、65.8%和67.4%。培养3个月后,只有1%赤泥用量处理显著降低了土壤中生物可给性Pb含量,而不同用量赤泥处理均显著降低了土壤中生物可给性Zn含量。研究表明赤泥是一种钝化污染土壤中Pb、Zn的潜力添加剂。  相似文献   

3.
研究了 EDTA淋洗重金属污染土壤前后 Pb的赋存形态的分布变化。结果表明 ,EDTA淋洗后的土壤中 Pb主要以残渣态和酸可提取态存在。酸可提取态 Pb含量的增加对于运用植物提取技术修复 Pb污染的土壤是有利的  相似文献   

4.
中国存在着较大面积受重金属污染土壤,尤其是Pb、Cd两种重金属的复合污染较常见。利用磷改性生物炭对Pb、Cd复合污染土壤展开修复研究。结果表明:(1)磷改性生物炭可使土壤中Pb、Cd由弱酸提取态向可氧化态、残渣态转变,Pb的可氧化态和残渣态分别增加了19.4、16.9百分点,Cd的可氧化态、残渣态分别增加了17.4、9.9百分点;(2)磷改性生物炭可提高土壤有效磷,有效磷最终稳定在39 mg/kg左右;(3)磷改性生物炭能显著增加土壤阳离子交换量至19.3 cmol/kg。磷改性生物炭不仅能有效钝化重金属,还能有效改善土壤质量。  相似文献   

5.
李丁  王济  宣斌  张雪  蔡雄飞  赵士杰  张帅 《环境工程学报》2019,13(12):2934-2944
通过室内钝化培养实验比较了羊厩肥、石灰和磷酸盐对土壤外源Pb的钝化效果和钝化修复后Pb的粒径分布特征。结果表明:3种钝化剂均能显著降低土壤中DTPA-Pb的含量,且钝化效果与钝化剂添加量成正比;磷酸盐对外源Pb钝化效果最好,P10处理下土壤中DTPA-Pb的含量降幅达80.53%,羊厩肥钝化效果最差,GM1对DTPA-Pb含量的降幅为6.51%;羊厩肥与磷酸盐将弱酸提取态Pb和可还原态Pb转变为活性更低的可氧化态Pb和残渣态Pb,以降低其活性,石灰将可还原态Pb转化为可氧化态Pb,以降低其活性;3种钝化剂添加均会提升土壤Olsen-P的含量。土壤磷淋溶临界值模型显示,当土壤Olsen-P含量124.25 mg·kg~(-1)时,会发生磷素淋溶现象;Pb在土壤粗砂粒、细沙粒、粉粒和黏粒中的含量差别很大,但赋存形态无明显差异,钝化剂添加会影响外源Pb在各粒级颗粒中的富集及形态分布。相关性分析结果表明,钝化剂主要通过将细沙粒、粉粒和黏粒中的可还原态Pb转化为粉粒和黏粒中的可氧化态Pb来降低土壤Pb的毒害性。研究结果可为3种钝化剂在Pb污染土壤修复中的高效利用及修复后土壤的潜在生态风险管控提供参考。  相似文献   

6.
通过3种洗脱方式(TE,EDTA-Na2传统洗脱方式;UE-1,超声波先作用于土壤后再加入EDTA-Na2洗脱;UE-2,超声波强化EDTA-Na2洗脱)对湖南典型矿区周边重金属复合污染农田土壤进行洗脱处理,研究了3种洗脱方式对土壤中Pb和Cd的洗脱效果及洗脱前后土壤中Pb和Cd的形态分布。结果表明:3种洗脱方式均对土壤中Pb和Cd有较好的洗脱效果,其中UE-2对土壤中Pb和Cd洗脱率均大于TE和UE-1;在作用时间为5~480 min时,UE-2对郴州土壤中Pb和Cd的洗脱率分别为43.9%~55.9%和63.6%~74.4%,对衡阳土壤中Pb和Cd的洗脱率分别为63.1%~80.9%和74.7%~86.7%,相对于传统萃取方式(TE),UE-2洗脱方式使土壤中Pb和Cd的洗脱率提高了将近25%;与未洗脱土壤相比,UE-2洗脱方式能显著降低土壤中Pb的Fe-Mn氧化物结合态和残渣态含量,显著降低Cd的残渣态、Fe-Mn氧化物结合态和酸可提取态含量;UE-2洗脱方式能显著降低土壤中Cd的TCLP提取态含量,而使Pb的TCLP提取态含量有所增加。  相似文献   

7.
采用土壤培养实验,研究了海泡石、钙基膨润土、钠基膨润土、汉白玉和石灰5种矿物材料在3个添加量下对Cd污染土壤p H和CEC、Cd植物有效性、浸出毒性和生物可给性以及Cd形态分布的影响。结果表明:几种矿物材料均可显著提高土壤p H和CEC。与对照相比,添加几种矿物材料后土壤p H提高0.46~1.15个单位,CEC增加5.8%~39.3%,其提高幅度随添加量的增加而增大。添加矿物材料显著降低土壤Cd的植物有效性(DTPA-Cd)、浸出毒性(TCLP-Cd)和生物可给性(SBET-Cd),且DTPA-Cd、TCLP-Cd和SBET-Cd含量的降低比例分别为9.4%~27.5%、6.4%~23.8%和7.7%~20.5%。添加几种矿物材料后,土壤中酸提取态Cd含量显著降低,残渣态Cd含量显著增加,可还原态和可氧化态Cd含量无明显变化。与对照相比,土壤酸提取态Cd含量降低6.2%~31.4%,残渣态Cd含量增加2.8%~9.7%。几种矿物材料中,海泡石和汉白玉对土壤Cd钝化效果相当,且优于其他矿物材料。  相似文献   

8.
改良剂对土壤Cu形态转化及其生物可给性的影响   总被引:2,自引:0,他引:2  
通过室内土壤培养实验,研究添加9种不同改良剂(沸石、石灰、磷矿粉、油菜秸秆、堆肥、赤泥、生物调理剂、生物炭和骨炭)对污染土壤Cu化学形态和生物可给性的影响。培养2个月,除堆肥处理外,添加5%的其他8种改良剂均显著地提高了土壤的p H值,提高效果为石灰生物炭赤泥生物调理剂油菜秸秆=骨炭磷矿粉沸石。培养2个月后,添加所有改良剂均显著地降低了土壤中酸可提取态Cu的含量,生物调理剂、生物炭和骨炭处理效果最为显著,分别比对照下降28%、18.1%和33.7%。添加不同的改良剂对土壤Cu的生物可给性也有影响。培养1个月,石灰、生物炭和骨炭处理分别导致土壤中生物可给性Cu含量比对照降低9.8%、10.5%和18.3%;培养2个月,赤泥、生物炭和堆肥处理分别导致生物可给性Cu含量比对照降低13.2%、17.6%和18.6%。研究表明,生物炭和骨炭可作为Cu污染土壤的理想改良剂。  相似文献   

9.
添加天然沸石和石灰对土壤镉形态转化的影响   总被引:12,自引:0,他引:12  
采用土壤培养实验,研究镉污染土壤中添加沸石、石灰及两者配施对土壤pH值和土壤镉形态变化的影响。结果表明,土壤pH值随沸石用量的增加而增加,随培养时间呈现先增加后下降并逐渐趋于稳定的趋势,但均高于对照。高剂量石灰的处理对土壤pH的影响最大,与对照相比土壤pH提高了3.33个单位。在土壤5~50 d培养过程中,石灰处理的土壤交换态镉含量呈现先逐渐降低而后略有升高的趋势,其余处理均呈下降趋势。培养50 d后,高剂量的沸石、石灰及高剂量沸石与石灰配施处理的土壤交换态镉含量从5 d时的67.54、61.95和55.56 mg/kg降低至54.65、49.93和45.96mg/kg。相关分析表明,不同培养时期交换态镉含量与土壤pH值呈负相关关系。在10个处理中,L2Z3(石灰2 g/kg土和沸石60 g/kg土)组合处理效果最好,使土壤交换态镉含量下降了34.68%,碳酸盐结合态镉含量上升了4.30%,铁锰氧化结合态镉含量上升了16.97%,有机结合态镉含量上升了1.31%,残渣态镉含量上升了12.11%。  相似文献   

10.
生物炭对Cd污染土壤的修复效果与机理   总被引:1,自引:0,他引:1  
通过修复培养实验和BCR连续提取实验研究牛粪生物炭(DM)和水稻秸秆生物炭(RS)对2种镉污染土壤的修复效果、影响因素及修复后的Cd的形态分布,探讨可能存在的修复机理。经56 d修复后,与CK相比,5%添加量的牛粪生物炭(DM5%)和水稻秸秆生物炭(RS5%)使TCLP提取态Cd在S1土壤中分别降低了15%和18%,在S2土壤中分别降低了5%和6%。但生物炭添加量为1%时对S2土壤中Cd无显著修复效果。DM5%和RS5%处理使Cd的酸可溶态在S1土壤中降低8.66%和9.25%,在S2土壤中降低7.86%和13.4%,相应的残渣态在S1土壤中升高8.30%和10.54%,在S2土壤中升高8.67%和14.92%。同时,DM5%和RS5%处理使土壤p H提高了7.69%~13.13%,TCLP提取态P增高了0.046~0.39 mg·g~(-1)。结果表明,添加量为5%的牛粪生物炭和秸秆生物炭可有效修复Cd污染土壤。  相似文献   

11.
Sequential extraction of heavy metals during composting of sewage sludge   总被引:15,自引:0,他引:15  
Amir S  Hafidi M  Merlina G  Revel JC 《Chemosphere》2005,59(6):801-810
The major limitation of soil application of sewage sludge compost is the total heavy metal contents and their bioavailability to the soil-plant system. This study was conducted to determine the heavy metal speciation and the influence of changing the physico-chemical properties of the medium in the course of composting on the concentrations, bioavailability or chemical forms of Cu, Zn, Pb and Ni in sewage sludge. Principal physical and chemical properties and FTIR spectroscopical characterization of sludge compost during treatment show the stability and maturity of end product. The total metal contents in the final compost were much lower than the limit values of composts to be used as good soil fertilizer. Furthermore, it was observed by using a sequential extraction procedure in sludge compost at different steps of treatment, that a large proportion of the heavy metals were associated to the residual fraction (70-80%) and more resistant fractions to extraction X-NaOH, X-EDTA, X-HNO3 (12-29%). Less than 2% of metals bound to bioavailable fractions X-(KNO3+H2O). Heavy metal distribution and bioavailability show some changes during composting depending on the metal itself and the physico-chemical properties of the medium. Bioavailable fractions of all elements tend to decrease except Ni-H2O. Zn and mainly Cu present more affinity to organic and carbonate fractions. In contrast, Pb is usually preferentially bound to sulfide forms X-HNO3. Nickel shows a significant decrease of organic form. Significant degrees of correlation were found between heavy metal fractions and changes of some selected variables (e.g. pH, ash, organic matter, humic substance) during the course of composting. Mobile fractions of metals are poorly predictable from the total content. The R2 value was significantly increased by the inclusion of other variables such as the amount of organic matter (OM) and pH.  相似文献   

12.
A soil column experiment was carried out to investigate the effects of inoculation of bacteria on metal bioavailability, mobility and potential leachability through single chemical extraction, consequential extraction and in situ soil solution extraction technologies. Results showed that bacteria inoculated, including Azotobacter chroococcum, Bacillus megaterium and Bacillus mucilaginosus, may pose both positive and negative impacts on bioavailability and mobility of heavy metals in soil, depending on the chemical nature of the metals. The activities of bacteria led to an increase of water dissolved organic carbon (DOC) concentration and a decrease of pH value, which enhanced metal mobility and bioavailability (e.g. an increase of water-soluble and HOAc-soluble Zn). On the other hand, bacteria could immobilize metals (e.g. a great reduction of water-soluble Pb) due to the adsorption by bacterial cell walls and possible sedimentation reactions with phosphate or other anions produced through bacterial metabolism.  相似文献   

13.
Lai HY  Chen ZS 《Chemosphere》2005,60(8):1062-1071
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.  相似文献   

14.
Chaturvedi PK  Seth CS  Misra V 《Chemosphere》2006,64(7):1109-1114
Release of heavy metals onto the soil as a result of agricultural and industrial activities may pose a serious threat to the environment. This study investigated the kinetics of sorption of heavy metals on the non-humus soil amended with (1:3) humus soil and 1% hydroxyapatite used for in situ immobilization and leachability of heavy metals from these soils. For this, a batch equilibrium experiment was performed to evaluate metal sorption in the presence of 0.05 M KNO(3) background electrolyte solutions. The Langmuir isotherms applied for sorption studies showed that the amount of metal sorbed on the amended soil decreased in the order of Pb(2+)>Zn(2+)>Cd(2+). The data suggested the possibility of immobilization of Pb due to sorption process and immobilization of Zn and Cd by other processes like co-precipitation and ion exchange. The sorption kinetics data showed the pseudo-second-order reaction kinetics rather than pseudo-first-order kinetics. Leachability study was performed at various pHs (ranging from 3 to 10). Leachability rate was slowest for the Pb(2+) followed by Zn(2+) and Cd(2+). Out of the metal adsorbed on the soil only 6.1-21.6% of Pb, 7.3-39% of Zn and 9.3-44.3% of Cd leached out from the amended soil.  相似文献   

15.
Zheng RL  Cai C  Liang JH  Huang Q  Chen Z  Huang YZ  Arp HP  Sun GX 《Chemosphere》2012,89(7):856-862
A historically multi-metal contaminated soil was amended with biochars produced from different parts of rice plants (straw, husk and bran) to investigate how biochar can influence the mobility of Cd, Zn, Pb and As in rice seedlings (Oryza sativa L.). Rice shoot concentrations of Cd, Zn and Pb decreased by up to 98%, 83% and 72%, respectively, due to biochar amendment, though that of As increased by up to 327%. Biochar amendments significantly decreased pore water concentrations (Cpw) of Cd and Zn and increased that of As. For Pb it depended on the amendment. Porewater pH, dissolved organic carbon, dissolved phosphorus, silicon in pore water and iron plaque formation on root surfaces all increased significantly after the amendments. The proportions of Cd and Pb in iron plaque increased by factors 1.8-5.7 and 1.4-2.8, respectively; no increase was observed for As and Zn. Straw-char application significantly and noticeably decreased the plant transfer coefficients of Cd and Pb. This study, the first to investigate changes in metal mobility and iron plaque formation in rice plants due to amending a historically contaminated soil with biochar, indicates that biochar has a potential to decrease Cd, Zn and Pb accumulations in rice shoot but increase that of As. The main cause is likely biochar decreasing the Cpw of Cd and Zn, increasing the Cpw of As, and increasing the iron plaque blocking capacity for Cd and Pb.  相似文献   

16.
Clemente R  Bernal MP 《Chemosphere》2006,64(8):1264-1273
The effects of humic acids (HAs) extracted from two different organic materials on the distribution of heavy metals and on organic-C mineralisation in two contaminated soils were studied in incubation experiments. Humic acids isolated from a mature compost (HAC) and a commercial Spaghnum peat (HAP) were added to an acid soil (pH 3.4; 966 mg kg(-1) Zn and 9,229 mg kg(-1) Pb as main contaminants) and to a calcareous soil (pH 7.7; 2,602 mg kg(-1) Zn and 1,572 mg kg(-1) Pb as main contaminants) at a rate of 1.1g organic-C added per 100g soil. The mineralisation of organic-C was determined by the CO(2) released during the experiment. After 2, 8 and 28 weeks of incubation the heavy metals of the soils were fractionated by a sequential extraction procedure. After 28 weeks of incubation, the mineralisation of the organic-C added was rather low in the soils studied (<8% of TOC in the acid soil; <10% of TOC in the calcareous soil). Both humic acids caused significant Zn and Pb immobilisation (increased proportion of the residual fraction, extractable only with aqua regia) in the acid soil, while Cu and Fe were slightly mobilised (increased concentrations extractable with 0.1M CaCl(2) and/or 0.5M NaOH). In the calcareous soil there were lesser effects, and at the end of the experiment only the fraction mainly related to carbonates (EDTA-extractable) was significantly increased for Zn and decreased for Fe in the humic acids treated samples. However, HA-metal interactions provoked the flocculation of these substances, as suggested by the association of the humic acids with the sand fraction of the soil. These results indicate that humic acid-rich materials can be useful amendments for soil remediation involving stabilisation, although a concomitant slight mobilisation of Zn, Pb and Cu can be provoked in acid soils.  相似文献   

17.
Castaldi P  Santona L  Melis P 《Chemosphere》2005,60(3):365-371
The effects of chemical amendments (zeolite, compost and calcium hydroxide) on the solubility of Pb, Cd and Zn in a contaminated soil were determined. The polluted soil was from the Southwest Sardinia, Italy. It showed very high total concentrations of Pb (19663 mgkg(-1) d.m.), Cd (196 mgkg(-1) d.m.) and Zn (14667 mgkg(-1) d.m.). The growth and uptake of heavy metals by white lupin (Lupinus albus L., cv. Multitalia) in amended soils were also studied in a pot experiment under greenhouse conditions. Results showed that the amendments increased the residual fraction of heavy metals in the soils, and decreased the heavy metals uptake by white lupin compared with the unamended control. Among the three amendments, compost and Ca(OH)2 were the most efficient at reducing Pb and Zn uptake, while zeolite was the most efficient at reducing Cd uptake by the plants. White lupin growth was better in amended soils than in unamended control. The above ground biomass increased with a factor 1.8 (soil amended with zeolite), 3.6 (soil amended with compost) and 3.1 (soil amended with Ca(OH)2) with respect to unamended soil. The roots biomass increased with a factor 1.4 (soil amended with zeolite), 5.6 (soil amended with compost) and 4.8 (soil amended with Ca(OH)2). Results obtained suggest that the soil chemical treatment improved the performance of crops by reducing bioavailability of metals in the soils. However it would be therefore interesting to find a suitable mixture of these amendments to contemporarily immobilize the three main pollutants in the polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号