首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以处于污泥膨胀的耐盐脱氮污泥为研究对象,分别采用有效容积为2和240 L的SBR装置(编号1#和2#),在进水NH3-N浓度为40~100 mg/L,pH为7.45~8.0,溶解氧为3~5 mg/L,温度为28~30℃的条件下,分别研究不同NaCl盐度(0、10、20和30 g/L)对污泥沉降性的影响。实验结果表明,在NaCl盐度条件下,可以明显改善耐盐脱氮污泥的沉降性。NaCl盐度越高,污泥絮凝体体积减小、丝状菌及原生动物减少趋势越明显,污泥沉降性效果越好。在30 g/L盐度时,1#和2#SBR的SV30分别从95%和80%降至53%和30%,SVI分别从185.5和170.8 mL/g降至127.3和78.4 mL/g。  相似文献   

2.
利用序批式活性污泥反应器(SBR)研究NaCl盐度对耐盐脱氮污泥硝化功能的影响,在此基础上考察瞬时盐度冲击对氨氧化细菌(AOB)、亚硝酸氮氧化细菌(NOB)的抑制及恢复情况。实验结果表明,当废水中NaCl浓度为0~50g/L时,AOB几乎没有影响,NOB影响较小。当NaCl浓度为60 g/L时,AOB影响较小,NOB受到一定程度的抑制。当NaCl浓度为70 g/L时,AOB、NOB均受到严重的抑制;耐盐脱氮污泥能够适应NaCl浓度50 g/L的瞬时冲击,盐度降低有利于AOB、NOB的恢复。当耐盐脱氮污泥受到NaCl浓度60 g/L的瞬时冲击时,系统发生"中毒"现象,盐度降低至0 g/L时,AOB、NOB均有不同程度恢复。  相似文献   

3.
环氧树脂高盐废水是目前较难处理的工业废水之一.采用混凝联合生物强化工艺:通过混凝过程进行预处理后,投加嗜盐菌进行生物强化考察盐度变化对系统降解有机物的影响以及污泥性状的变化情况.结果表明,当废水中氯离子浓度达到驯化目标10 g/L时,系统对COD的去除率仍稳定在85%左右;以没有投加嗜盐菌的反应器为对照组,在进水COD平均浓度为550 mg/L左右,氯离子浓度由12 g/L增至21 g/L时,对照组COD平均去除率由82%降至60%以下,而投加了嗜盐菌的反应器(投加组)则仍保持在85%以上;此外,盐度的变化同时影响污泥的活性及其沉降性能,随着盐度增大,两组中的污泥活性均有所降低,但投加组的污泥活性相对较高,其污泥的沉降时间和污泥体积指数(sludge volume in-dex,SVI)值也较低.采用本工艺处理环氧树脂高盐废水,使得生物处理过程能够长期稳定运行,且能够保持较高的耐盐度和COD去除率.  相似文献   

4.
生物处理单元采用水解酸化、多级串联接触曝气、连续流的除磷脱氮A2/O工艺,并辅以外排厌氧富磷污水侧流除磷,开发了一个新型的具有强化除磷脱氮功能的污泥减量HA—A/A—MCO工艺。用该工艺处理校园生活污水发现,在SRT60d、进水COD316~407mg/L、NH4+-N30~40mg/L、TN35~53mg/L、TP8—12mg/L的条件下,出水COD≤18mg/L、NH4+-N≤2.1mg/L、TN≤10.3mg/L、TP≤0.44mg/L。研究还发现,水解酸化池处理产生的VFA能有效促进生物除磷脱氮,导致厌氧释磷量达57mg/L,进入化学除磷池的侧流液量仅相当于进水量的13%;系统最主要的脱氮形式是SND和缺氧反硝化,SND脱氮占脱氮总量的50%,缺氧反硝化占26%;HA-A/A—MCO系统有效实现了生物相分离,并利用生物捕食作用获得较低的污泥产率,0.1gMLSS/gCOD。  相似文献   

5.
在2个相同的SBR中分别驯化普通污泥和耐盐污泥,研究两者在0%、0.9%、1.2%、1.5%和1.8%(W/V)的盐度(NaCl)下对生活污水脱氮性能的差异。SBR运行经过厌氧、好氧、缺氧3个阶段,HRT分别为1、6和1 h。研究结果表明:在每一级盐度下,耐盐污泥的脱氮性能都好于普通污泥。随着盐度的增大,耐盐污泥中氨氮...  相似文献   

6.
以剩余污泥水解酸化液为外加碳源的污水生物脱氮   总被引:3,自引:0,他引:3  
为解决低碳氮比污水生物脱氮过程反硝化碳源不足的问题,利用剩余污泥水解酸化液为外加碳源,通过具有曝气段与非曝气段的一体化曝气生物滤池(BAF),研究低碳氮比污水生物脱氮的性能与工艺条件。实验结果表明,预处理后的水解酸化液VFAs为3134.9~5251.4mg/L、ThODVFAs/COD为59.87%~91.85%,适合作为生物脱氮的外加碳源;水解酸化液的投配量、进水TN浓度对系统生物脱氮效果的影响较大,气水比、曝气段与非曝气段比例对系统的硝化和反硝化性能有重要的影响;在温度为25±1℃,水解酸化液COD平均为7555.1mg/L,进水TN、NH4-N和COD分别平均为43.88mg/L、39.04mg/L和56.8mg/L,碳源与污水投配的流量比为1:75的条件下,当BAF水力停留时间(HRT)为8h、曝气段与非曝气段比例为3:3、气水比为10:1、回流比为2:1时,NH4-N和TN的去除率分别超过98%和75%,出水COD平均为28.6mg/L。研究指出,剩余污泥水解酸化液经过预处理后可用作低碳氮比污水生物脱氮的外加碳源,有效地提高了反硝化效果,并不会造成二次污染,同时又可以实现剩余污泥的减量化和资源化。  相似文献   

7.
NaCl盐度对耐盐活性污泥沉降性能及脱氮的影响   总被引:8,自引:3,他引:5  
针对海水冲厕工程的实施,采用序批式活性污泥反应器(SBR)处理实际含盐生活污水,考察了盐度对耐盐活性污泥沉降性能及脱氮效能的影响。研究发现,经过长期盐度驯化后的污泥系统也会出现丝状菌污泥膨胀。在经过10 g/L盐度长期驯化的污泥系统中,污泥容积指数(SVI)随着盐度的升高而降低,盐度升高使丝状菌减少,污泥絮体变小变密实。但是,盐度降低时会引发更严重的污泥膨胀,导致污泥流失。对脱氮性能的研究表明,硝化菌的耐盐能力较强。当盐度由10 g/L改变为0、5、15、20 g/L时,氨氮去除率依然可以维持在99%以上。但亚硝酸盐积累率无论是盐度升高或降低时都升高,这表明驯化后污泥中的亚硝酸氧化菌(NOB)对盐度变化的耐受能力比氨氧化菌(AOB)弱,无论盐度升高或降低都会对其产生较大的影响。  相似文献   

8.
光-Fenton氧化破解剩余污泥和改善污泥脱水性能   总被引:5,自引:1,他引:4  
利用紫外光-Fenton(光-Fenton)氧化处理城市剩余污泥,通过上清液的SCOD、多聚糖以及蛋白质浓度表征污泥胞外聚合物(EPS)的破解情况,通过污泥过滤比阻(SRF)和滤饼含水率表征污泥脱水性能的变化。结果表明,光.Fenton氧化破解污泥EPS和改善污泥脱水性能的效能明显优于单独Fenton反应和单独紫外光照射处理。pH为3、反应时间为2h,H2O2投加量为4g/L和Fe^2+投加量为0.6mg/L是光-Fenton氧化处理供试污泥的适宜条件。在适宜处理条件下,污泥上清液中的SCOD、多聚糖和蛋白质浓度分别由67.46mg/L、12.53mg/L和8.62mg/L增加到568.12mg/L、448.62mg/L和292.94mg/L;SRF和滤饼含水率分别由2.4×10^S2/g和88.52%下降至5.26×10^8S^2/g和76.36%。光-Fenton反应在有效破懈污泥的同时,提高了污泥的脱水性能.有利于污泥的减量化。  相似文献   

9.
半焦具有孔隙发达、比表面积大、疏水性能强、热值高等特点,采用污泥重力浓缩脱水实验法考察了半焦投加量、粒度对污泥调质与浓缩脱水效果的影响.通过扫描电镜、红外光谱等现代分析手段探讨了基于半焦的污泥调质与深度浓缩脱水的机理.结果表明,当半焦粒度≤425 μm、半焦投加量为2.5 g/100 g污泥时,浓缩污泥上清液的浊度、COD、SS分别从污泥调质前的836 NTU、258.2 mg/L、630.1 mg/L降至调质后的14.8 NTU、38.2 mg/L、18.6 mg/L,达到国家污水综合排放二级标准;浓缩污泥的含水率由调质前的91.74%降至调质后83.71%;污泥静置重力浓缩过程中,经半焦调质后的污泥沉降速率明显增加,污泥在前20 min的平均沉降速率由调质前的2.49 mL/min提高至3.48 mL/min;半焦对污泥调质与深度脱水机理主要表现在半焦对污泥的吸附作用及半焦对污泥疏水性能的增强作用.可见,基于半焦的污泥调质不仅能显著地改善污泥的浓缩脱水性能,还能提高污泥的热值,为污泥的能源化利用创造了条件.  相似文献   

10.
盐度对活性污泥硝化功能的影响   总被引:3,自引:1,他引:2  
利用批量试验研究了盐度对常规活性污泥(非耐盐污泥)硝化功能的影响;通过逐步提高试验水的NaCl浓度驯化活性污泥,考察了驯化污泥的硝化功能;并进一步研究了适应于某NaCl浓度的耐盐硝化菌在受到盐度冲击时,其硝化功能的变化.结果表明,常规活性污泥中的硝化菌对盐度较敏感,当试验水中的NaCl质量浓度达到10.0 g/L时,污泥比硝化速率降低86%;通过逐步提高试验水的NaCl浓度对活性污泥进行长期驯化,可以驯化出耐盐硝化菌,耐盐污泥的比硝化速率接近于常规活性污泥的比硝化速率;适应于某NaCl浓度的耐盐硝化菌在受到盐度冲击时,NaCl浓度突然增加会对其产生更强的抑制作用.  相似文献   

11.
为了解高效厌氧反应器的颗粒污泥特性,研究了生产性EGSB反应器处理造纸废水不同高度的颗粒污泥的固体浓度、外观形态和产甲烷活性。采用甲烷势自动测试系统测试产甲烷活性,测试时间3d。结果表明,颗粒污泥的固体浓度以及溶解性COD随高度的增加逐渐降低,有机质含量沿整个反应器高度不变。反应器内固体浓度和有机质含量平均值为Ts:(123±4)g/L,VS:(75±3)g/L,VS/TS:(61±3)%。溶解性COD浓度由723mg/L降低到449mg/L。反应器内的颗粒污泥产甲烷活性为(0.32±0.03)gCOD/gVSSd(112mLCH。/gVSSd)。反应器底部和顶部颗粒污泥的当量直径分别为169μm和145μm,颗粒污泥呈椭球状(圆度为2.6)。EGSB反应器内由于进水的上升流速较高,污泥颗粒处于膨胀状态,致使颗粒污泥特性沿反应器高度变化不大。  相似文献   

12.
采用膜生物反应器进行含酚废水的处理,探讨投加好氧颗粒污泥对反应器中污泥性能的影响。结果表明,在膜生物反应器中投加好氧颗粒污泥能有效改善污泥性能,提高处理效果。从采用絮状污泥到逐渐增加好氧颗粒污泥投加量为100%的过程中,反应器中污泥浓度明显提高,MLSS由5 582 mg/L增加到8 168 mg/L;沉降性能得到改善,SVI由135.85 mL/g下降到29.36 mL/g;疏水性增强,Zeta电位由-20.302 mV升高到-4.325 mV;对含酚废水中COD、NH3-N的降解能力明显提高,COD、NH3-N、NO3-N去除率分别由87.3%、83.2%、55.3%增加到99.2%、94.9%、66.3%。改善了膜污染现象,膜通量衰减率由63.3%降低到42.8%。用二元多项式三维回归分析,得到污染物去除率关于好氧颗粒污泥投加量和反应器运行时间的二元方程,对指导好氧颗粒污泥膜生物反应器的连续运行具有重要意义。  相似文献   

13.
原位臭氧氧化污泥减量工艺的运行效能   总被引:1,自引:0,他引:1  
采用ASBR/SBR原位臭氧污泥减量工艺,重点研究了原位臭氧氧化对SBR段污泥产率和出水水质的影响。两个相同的ASBR/SBR组合工艺同时运行,每隔3个周期向臭氧投加组SBR的曝气阶段原位间歇投加臭氧,臭氧投加量为0.027 g O3/g MLSS,连续运行40 d;对照组不投加臭氧作为对比。结果表明,原位臭氧氧化实现污泥减量约43.9%,臭氧投加组SBR段平均污泥产率系数为0.1447 g SS/g SCOD,而对照组为0.2580 g SS/g SCOD,投加组没有惰性污泥的累积,并且污泥沉淀性能得到改善。原位臭氧氧化对出水水质影响不大,投加组与对照组相比,臭氧投加3周期后的出水COD、NH4+-N、TN和TP平均值分别为47.8、0.76、14.1和6.4 mg/L,去除率分别下降了4%、2%、3%和7.7%,其中COD、NH4+-N和TN均能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。  相似文献   

14.
污泥的聚集形态和活性,是影响厌氧反应器处理效率的关键因素。通过对厌氧膨胀床反应器(anaerobicex—pandedblanketreactor,AEBR)处理低浓度城镇污水在启动和稳定运行期的污泥活性研究,AEBR在启动运行期内,接种颗粒污泥为适应低浓度基质条件,污泥粒径经历从大变小,再重新颗粒化粒径变大的过程。在运行期第103天,粒径小于1000μm污泥的体积比达到44.7%,平均粒径为952μm,到运行期第173天,粒径小于1000μm污泥的体积比降为28%,平均粒径达1179μm,污泥重新颗粒化完成。颗粒污泥适应新的环境后,单位重量污泥的最大比产甲烷活性(specificmetha.nogensisactivity,SMA)值和胞外聚合物含量增加,分别达到112mLCH4/(gVSS·d)和215mg/gVSS。在处理实际城镇污水的AEBR反应器内,辅酶F420含量可以有效指示污泥样品的产甲烷活性,AEBR反应器不同高度位置的污泥活性不一样,反应器底部污泥活性低于中上部区域污泥的活性。  相似文献   

15.
采用嗜酸性硫杆菌生物淋滤联合Fenton氧化法对印染污泥脱水性能进行了研究。结果表明,生物淋滤过程中pH下降速率随着硫粉添加量增加而变快,经生物淋滤处理后污泥的脱水性能在一定程度上得到了改善。对生物淋滤后的污泥进行了Fenton氧化处理,获得的最佳反应条件为反应时间2h,H2O2和Fe2+添加量分别为6g/L和0.5g/L。在该条件下,污泥上清液中总有机碳(TOC)由20.8mg/L增加到356.6mg/L;污泥比阻(SRF)和滤饼含水率分别由5.98×10^11s2/g和88.75%减少至1.26×10^11 S2/g和82.85%。生物淋滤-Fenton氧化法在污泥破解程度和脱水性能改善方面均优于单独Fenton氧化法。  相似文献   

16.
利用一种新型静态序批式蠕虫生物反应器处理剩余污泥,另设一个未加蠕虫的反应器作为对照。通过对比分析2个反应器中污泥的比减量速率、沉降性能、脱水性能和比好氧速率来研究蠕虫捕食对污泥性质的影响。实验结果表明,蠕虫具有良好的污泥减量效果,蠕虫加入后可使污泥比减量速率增加(0.15±0.02)mg/(mg·d)。蠕虫作用后污泥沉降性能明显改善,污泥容积指数(SVI)降低28.9%,胞外聚合物(EPS)含量减少和污泥絮体结构变得更加密实规则是污泥沉降性能得到改善的重要原因。蠕虫捕食后污泥脱水性能变差,污泥标准化毛细吸水时间和比阻分别增大2.45倍和1.16倍,推测主要是由污泥絮体平均粒径减小造成的。另外,蠕虫的存在会降低污泥的微生物活性,异养细菌、氨氧化细菌和亚硝酸盐氧化细菌的比好氧速率分别降低7.09%、7.84%和8.29%。  相似文献   

17.
以好氧颗粒污泥接种小试柱形SBR,采用自配无机氨氮废水为进水,在中温(28~30℃)条件下通过逐步提升进水NH4^+-N浓度(100~650mg/L)和缩短水力停留时间(8~4h)快速培养硝化颗粒污泥。实验结果证实,以好氧颗粒污泥接种可以促使硝化颗粒污泥快速形成,36d时粒径〉0.21mm的颗粒污泥占总数的93%,颗粒污泥NH4-N比去除速率为50.53mgNH4^+-N/(gSS·h)。硝化颗粒污泥具有良好的短程硝化性能,亚硝酸盐产生速率和累积率分别保持在3.3kgNO2-N/(m^3·d)和85%以上。反应初期高FA和反应末期高FNA的共同抑制是该研究中实现和维持稳定短程硝化的关键因素。  相似文献   

18.
通过检测活性污泥的电子传递体系活性以及生物多样性,研究Ni2+对活性污泥微生物活性及群落多样性的影响。结果表明:与对照系统相比,5mg/L的Ni2+对2,3,5-lriphenylteItrazoliumchloride(TTC.ETS)活性未产生显著的影响;但当Ni2+的浓度进一步增大到10、20和40mg/L后,其对序批式反应器内活性污泥TTC—ETS活性的抑制率分别达到(36.794-11.14)%、(55.88±13.90)%和(70.97±6.78)%。低浓度Ni2+.能增强活性污泥微生物对碳源的利用,但高于10mg/L的Ni2+则显著抑制了活性污泥微生物对碳源的利用。各个SBR系统中微生物群落最常见的物种相近,物种丰富度和均一性则均有所不同,其中群落物种丰富度随着Ni2+浓度的增加而逐渐减小。TTC—ETS活性、平均每孔颜色变化率、Shan—liOn指数和Simpson指数,与Ni2+的胁迫浓度之间的显著相关性表明,它们均可有效地表征Ni2+胁迫对活性污泥微生物活性及群落多样性的影响程度。  相似文献   

19.
活性污泥法处理高钙废水中污泥特性的变化   总被引:3,自引:0,他引:3  
通过单级SBR法处理模拟高钙废水,研究了活性污泥法处理高钙废水的过程中钙离子对COD,MLVSS,MLSS,SVI,污泥增长速率,污泥形态结构及生物相的影响,揭示活性污泥法处理高钙废水的过程中污泥量巨大的原因。采用逐步增加钙离子浓度的方法,检测到在污泥培养期([Ca2+]=0 mg/L),COD去除率为98.1%,MLVSS和MLSS稳定在4 900~5 500mg/L,污泥增长速率为67 mg/(L·d),SVI为55~60 mL/g;在驯化处理期([Ca2+]=120~2 400 mg/L),COD去除率降至87.37%,MLVSS降至2 500 mg/L,MLSS增加至19 300 mg/L,污泥增长速率为212.31 mg/(L·d),SVI降至25 mL/g;在冲击期([Ca2+]=4 000 mg/L),COD去除率降至69.23%,MLVSS降至1 600 mg/L,MLSS迅速增加至24 200 mg/L,污泥增长速率为816.67 mg/(L·d),SVI降至14 mL/g。经显微镜观察发现,污泥絮体由松散变得密实,生物相由钟虫等指示性微生物变为不适应环境的胞囊结构。结果表明,随Ca2+浓度的增加,COD去除率下降,MLSS迅速增加,MLVSS和SVI急剧缩小,说明活性污泥中的活性微生物逐渐减少,而无机物组分逐渐增多;钙离子的加入促使系统碳酸平衡向右移动,使离子状态的钙大部分转化为难降解的碳酸盐,并附着于污泥絮体上,污泥绒粒被压缩,使污泥颗粒密实度及MLSS迅速增加,导致污泥排放量巨大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号