首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The operating life of an Fe(0)-based permeable reactive barrier (PRB) is limited due to chemical reactions of Fe(0) in groundwater. The relative contributions from mineral precipitation, gas production, and microbial activity to the degradation of PRB performance have been uncertain. In this controlled field study, nitrate-rich, site groundwater was treated by Fe(0) in large-volume, flow-through columns to monitor the changes in chemical and hydraulic parameters over time. Tracer tests showed a close relationship between hydraulic residence time and pH measurements. The ionic profiles suggest that mineral precipitation and accumulation is the primary mechanism for pore clogging around the inlet of the column. Accumulated N(2) gas generated by biotic processes also affected the hydraulics although the effects were secondary to that of mineral precipitation. Quantitative estimates indicate a porosity reduction of up to 45.3% near the column inlet over 72 days of operation under accelerated flow conditions. According to this study, preferential flow through a PRB at a site with similar groundwater chemistry should be detected over approximately 1 year of operation. During the early operation of a PRB, pH is a key indicator for monitoring the change in hydraulic residence time resulting from heterogeneity development. If the surrounding native material is more conductive than the clogged Fe-media, groundwater bypass may render the PRB ineffective for treating contaminated groundwater.  相似文献   

2.
Jacobs PH  Waite TD 《Chemosphere》2004,54(3):313-324
Increasing attention is being placed on capping as a relatively new option in managing both contaminated sediments and dredged materials, due to its economic and environmental benefits. Capping denotes the placement of a cover onto potentially hazardous sediments or dredged material dumps to inhibit the transfer of contaminants into the water column. Retention of divalent iron and manganese cations using sandy capping layers containing natural zeolites as a reactive additive (active barrier systems, ABS) is evaluated in this study. Three different natural zeolite (clinoptilolite) rocks, two from deposits in Australia and one from a North-American deposit, were investigated and compared with respect to their mineralogical, physical and chemical properties. In particular, results from batch and column experiments show that ABS based on these materials can efficiently demobilise iron and manganese from percolating, anoxic pore water by cation exchange under favourable conditions. The retention, however, may be reduced strongly where competitive exchange with divalent cations such as calcium prevails or where mobile colloidal pore water constituents such as clay minerals or humic substances bind fractions of the dissolved iron or manganese. Therefore, the potential of ABS as a means for in situ remediation has to be evaluated diligently with particular regard to the pore water composition of the sediment to be capped.  相似文献   

3.
This paper investigates the potential of using the silver antibacterial properties combined with the metal ion exchange characteristics of silver-modified clinoptilolite to produce a treatment system capable of removing both contaminants from aqueous streams. The results have shown that silver-modified clinoptilolite is capable of completely eliminating Escherichia coli after 30-min contact time demonstrating its effectiveness as a disinfectant. Systems containing both E. coli and metals exhibited 100 % E. coli reduction after 15-min contact time and maximum metal adsorption removal efficiencies of 97, 98, and 99 % for Pb2+, Cd2+, and Zn2+ respectively after 60 min; 0.182–0.266 mg/g of metal ions were adsorbed by the zeolites in the single- and mixed-metal-containing solutions. Nonmodified clinoptilolite showed no antibacterial properties. This study demonstrated that silver-modified clinoptilolite exhibited high disinfection and heavy metal removal efficiencies and consequently could provide an effective combined treatment system for the removal of E. coli and metals from contaminated water streams.  相似文献   

4.
At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods.  相似文献   

5.
Three chemical immobilization materials, agricultural limestone (AL), mineral rock phosphate (RP), and diammonium phosphate (DAP), were evaluated using solute transport experiments to determine their ability to reduce subsurface heavy metal transport in a smelter contaminated soil. Percent reductions in metals transported were based on comparison with cumulative totals of metal species eluted through 60 pore volumes from an untreated soil. Reductions of metal eluted from the AL treatment were 55% for Cd, 45.2% for Pb, and 21.9% for Zn. Rock phosphate mixed with soil at 60 and 180 g kg(-1) was generally ineffective for reducing Cd, Pb, and Zn elution with <27% reduction for Cd, Pb, and Zn. Rock phosphate placed under contaminated soil as a reactive barrier (i.e. layered RP) at 180 g kg(-1) reduced Cd 53% and Zn 24%, and was the most efficient treatment for reducing Pb (99.9%) transport. DAP treatments were superior to all other materials for reducing Cd and Zn elution with reduction >77% for Zn and >91% for Cd from the 90 g DAP kg(-1) treatment. Increasing DAP from 10 to 90 g kg(-1) increased total arsenic released from 0.13 to 29.5 mg kg(-1) and total P eluted from 2.31 to 335 mg. DAP at 10 g kg(-1) was the most effective treatment for immobilizing the combination of Cd, Pb, and Zn, with reductions of 94.6, 98.9, and 95.8%, respectively.  相似文献   

6.
Biomass accumulation is a load-limiting factor in the operation of biofilters used for air pollution control. As the biofilm thickens, portions at the base are no longer exposed to contaminants and oxygen and, thus, provide no treatment. Smaller pores are filled with biomass so that air no longer flows into them. As airflow paths are restricted, air may be prevented from reaching some pores even before they are filled. Eventually blockage becomes sufficiently widespread so that increasing head loss and decreasing removal efficiency require that the system be shut down. Optimization of biofilter design requires a better understanding of the mechanisms by which biofilters clog. In this work, a numerical percolation model of the blockage process was developed for application to biofilters. It allows comparison of pore blockage histories for various pore size distributions and predicts biomass accumulation, head loss, and treatment efficiency as a function of time, as well as total time, until blockage prevents further operation. Although the model was reasonably accurate in predicting the time before complete clogging, it underestimated intermediate values of head loss. Observations of a clogged biofilter suggest that this occurs because clogging later in the process is nonuniform at scales that are large in comparison with individual pores.  相似文献   

7.
Applying amendments to multi-element contaminated soils can have contradictory effects on the mobility, bioavailability and toxicity of specific elements, depending on the amendment. Trace elements and PAHs were monitored in a contaminated soil amended with biochar and greenwaste compost over 60 days field exposure, after which phytotoxicity was assessed by a simple bio-indicator test. Copper and As concentrations in soil pore water increased more than 30 fold after adding both amendments, associated with significant increases in dissolved organic carbon and pH, whereas Zn and Cd significantly decreased. Biochar was most effective, resulting in a 10 fold decrease of Cd in pore water and a resultant reduction in phytotoxicity. Concentrations of PAHs were also reduced by biochar, with greater than 50% decreases of the heavier, more toxicologically relevant PAHs. The results highlight the potential of biochar for contaminated land remediation.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) are of environmental concern because many PAHs are either carcinogens or potential carcinogens. Petroleum products are a major source of PAHs. The occurrence of PAH contamination is widespread and novel treatment technologies for the remediation of contaminated soils are necessary.Ozone has been found to be extremely useful for the degradation of PAHs in soils. For these compounds, the reaction with molecular ozone appears to be the more important degradation pathway. Greater than 95% removal of phenanthrene was achieved with an ozonation time of 2.3 h at an ozone flux of 250 mg h−1. After 4.0 h of treatment at an ozone flux of 600 mg h−1, 91 % of the pyrene was removed. We have also found that the more hydrophobic PAHs (e.g. chrysene) react more slowly than would be expected on the basis of their reactivity with ozone, suggesting that partitioning of the contaminant into soil organic matter may reduce the reactivity of the compound. Even so, after 4 h of exposure to ozone, the chrysene concentration in a contaminated Metea soil was reduced from 100 to 50 mg kg−1 .Ozone has been found to be readily transported through columns packed with a number of geological materials, including Ottawa sand, Metea soil, Borden aquifer material and Wurtsmith aquifer material. All of these geological materials exerted a limited (finite) ozone demand, i.e. the rate of ozone degradation in soil columns is very slow after the ozone demand is met. Moisture content was found to increase the ozone demand, most likely owing to the dissolution of gaseous ozone into the pore water. As once the initial ozone demand is met, little degradation of ozone is observed, it should be possible to achieve ozone penetration to a considerable distance away from the injection well, suggesting that in-situ ozonation is a feasible means of treating uncontaminated unsaturated soils. This is substantiated by two field studies where in-situ ozonation was apparently successful at remediating the sites.  相似文献   

9.
This study focuses on artificial lightweight aggregates (ALWAs) formed from sewage sludge and ash at lowered co-melting temperatures using boric acid as the fluxing agent. The weight percentages of boric acid in the conditioned mixtures of sludge and ash were 13% and 22%, respectively. The ALWA derived from sewage sludge was synthesized under the following conditions: preheating at 400 degrees C 0.5 hr and a sintering temperature of 850 degrees C 1 hr. The analytical results of water adsorption, bulk density, apparent porosity, and compressive strength were 3.88%, 1.05 g/cm3, 3.93%, and 29.7 MPa, respectively. Scanning electron microscope (SEM) images of the ALWA show that the trends in water adsorption and apparent porosity were opposite to those of bulk density. This was due to the inner pores being sealed off by lower-melting-point material at the aggregates'surface. In the case of ash-derived aggregates, water adsorption, bulk density, apparent porosity, and compressive strength were 0.82%, 0.91 g/cm3, 0.82%, and 28.0 MPa, respectively. Both the sludge- and ash-derived aggregates meet the legal standards for ignition loss and soundness in Taiwan for construction or heat insulation materials.  相似文献   

10.
A permeable reactive barrier (PRB) was installed in Aznalcóllar (Spain) in order to rehabilitate the Agrio aquifer groundwater severely contaminated with acid mine drainage after a serious mining accident. The filling material of the PRB consisted of a mixture of calcite, vegetal compost and, locally, Fe0 and sewage sludge. Among the successes of the PRB are the continuous neutralisation of pH and the removal of metals from groundwater within the PRB (removals of >95 %). Among the shortcomings are the improper PRB design due to the complexity of the internal structure of the Agrio alluvial deposits (which resulted in an inefficient capture of the contaminated plume), the poor degradability of the compost used and the short residence time within the PRB (which hindered a complete sulphate reduction), the clogging of a section of the PRB and the heterogeneities of the filling material (which resulted in preferential flows within the PRB). Undoubtedly, it is only through accumulated experience at field-scale systems that the potentials and limits of the PRB technology can be determined.  相似文献   

11.
Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg(-1)), Tampa soil was also contaminated with As (230 mg kg(-1)). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO3. The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation.  相似文献   

12.
Rainfall and runoff were measured for many years on small watersheds on 10–15% slopes in east-central Ohio. Surface runoff from watersheds used for corn (Zea mays L.) production was high with conventional tillage and very low with no-tillage. A 50-year storm produced 15 times more runoff from a plowed watershed than from a mulch-covered no-till watershed. Reduced runoff from the no-till surface resulted in increased percolation and enhanced the potential for transport of agricultural chemicals to the groundwater. The mulched surface of the no-till watershed also created a favorable environment for the deep burrowing earthworm, Lumbricus terrestris L., whose burrows can transmit water rapidly downward through the soil profile, thus contributing to the high infiltration rates.Open biopores and smaller structural pores were counted and measured to characterize the major flow paths of water movement in the no-till soil. Photos of horizontal surfaces at 2.5-, 7.5-, 15-, and 30 - cm depths and vertical faces of impregnated samples from the 1- and 5-cm depths were evaluated by image analysis. Number of pores was inversely proportional to pore diameter, however pores in the 0.05–1.0-mm diameter range accounted for less porosity than did those in the 1.0–5.0-mm range. The large pores were nearly vertical earthworm burrows and were continuously open from near the surface to the bedrock. Surface applications of lime increased subsoil pH in the no-till watershed but had little effect below the plow sole in the tilled watershed, suggesting that rapid movement of water in large pores can enhance chemical migration into the subsoil.  相似文献   

13.
Finzgar N  Kos B  Lestan D 《Chemosphere》2004,57(7):655-661
The feasibility of in situ washing of soil contaminated with Pb (6.83 mmol kg(-1)) using biodegradable chelator, [S,S] stereoisomere of ethylenediamine disuccinate ([S,S]-EDDS) and horizontal permeable barriers was examined in soil columns. After 4-cycles of 10 mmol kg(-1) soil [S,S]-EDDS applications, followed by irrigation, 24.7% of total initial Pb was washed from the contaminated soil and accumulated into the barrier. Sequential extractions indicated that washing removed most of the Pb from the organic soil fraction. Barriers were positioned 20 cm deep in the soil and consisted of a 2 cm layer of nutrient enriched vermiculite. Barriers reduced leaching of Pb in the first cycle of [S,S]-EDDS addition by more than 500-times compared to columns with no barrier. After four cycles of chelator addition, a total of 0.24% of the initial Pb was leached from the columns with barriers. Four cycles of in situ soil washing in soil columns were less effective than simulated ex situ soil washing with 40 mmol kg(-1) [S,S]-EDDS, where 51.0% of the Pb was removed after 48-h extraction. Ex situ soil washing with 10 mmol kg(-1) [S,S]-EDDS was equally effective as the first cycle of in situ soil washing (15.5% and 14.5% of removed Pb, respectively).  相似文献   

14.
Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-yr study period, the Fe0 remained reactive as shown in pore water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-yr treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 yr of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.  相似文献   

15.
Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.  相似文献   

16.
Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors.  相似文献   

17.
Lead removal in fixed-bed columns by zeolite and sepiolite   总被引:1,自引:0,他引:1  
Turan M  Mart U  Yüksel B  Celik MS 《Chemosphere》2005,60(10):1487-1492
The removal efficiency of zeolite (clinoptilolite) and sepiolite from lead containing aqueous solutions was investigated. A series of experiments were conducted in batch-wise and fixed-bed columns. Synthetic wastewaters containing lead (50 mg l (-1)) and acetic acid (0.001 N) along with untreated and regenerated clinoptilolites and sepiolites were used in the adsorption studies. Batch tests were mainly conducted to isolate the magnitude of lead precipitation from real adsorption. Adsorption isotherms for both abstraction and adsorption were constructed. The removal of lead is found to be a sum of adsorption induced by ion exchange and precipitation of lead hydroxide. The breakthrough curves were obtained under different conditions by plotting the normalized effluent lead concentration (C/C0) versus bed volume (BV). The ion exchange capacity of sepiolite and clinoptilolite for lead removal showed good performance up to approximately 100 and 120 BV where the C/C0 remained below 0.1, respectively. The lead removal capacity of clinoptilolite bed from wastewater containing only lead yielded 45% higher performance compared to that of acetic acid partly due to a decrease in the effluent pH and consequently in precipitation. Also, the presence of acetic acid in the sepiolite column decreased the bed volumes treated by about 40%. Removal efficiency of lead-acetic system both in untreated clinoptilolite and sepiolite columns was found higher than that in regenerated columns.  相似文献   

18.
Investigation of gas production and entrapment in granular iron medium   总被引:1,自引:0,他引:1  
A method for measuring gas entrapment in granular iron (Fe0) was developed and used to estimate the impact of gas production on porosity loss during the treatment of a high NO3- groundwater (up to approximately 10 mM). Over the 400-d study period the trapped gas in laboratory columns was small, with a maximum measured at 1.3% pore volume. Low levels of dissolved H2(g) were measured (up to 0.07+/-0.02 M). Free moving gas bubbles were not observed. Thus, porosity loss, which was determined by tracer tests to be 25-30%, is not accounted for by residual gas trapped in the iron. The removal of aqueous species (i.e., NO3-, Ca, and carbonate alkalinity) indicates that mineral precipitation contributed more significantly to porosity loss than did the trapped gases. Using the stoichiometric reactions between Fe0 and NO3-, an average corrosion rate of 1.7 mmol kg-1 d-1 was derived for the test granular iron. This rate is 10 times greater than Fe0 oxidation by H2O alone, based on H2 gas production. NO3- ion rather than H2O was the major oxidant in the groundwater in the absence of molecular O2. The N-mass balance [e.g., N2g and NH4+ and NO3-] suggests that abiotic reduction of NO3- dominated at the start of Fe0 treatment, whereas N2 production became more important once the microbial activity began. These laboratory results closely predict N2 gas production in a separated large column experiment that was operated for approximately 2 yr in the field, where a maximum of approximately 600 ml d-1 gas volumes was detected, of which 99.5% (v/v) was N2. We conclude that NO3- suppressed the production of H2(g) by competing with water for Fe0 oxidation, especially at the beginning of water treatment when Fe0 is highly reactive. Depends on the groundwater composition, gas venting may be necessary in maintaining PRB performance in the field.  相似文献   

19.
Laboratory column tests conducted to gain insight regarding the biological and chemical clogging mechanisms in a porous medium are presented. To seed the porous medium with landfill bacteria, a mixture of Keele Valley Landfill and synthetic leachate permeated through the column under anaerobic conditions for the first 9 days of operation. After this, 100% synthetic leachate was used. The synthetic leachate approximated Keele Valley Landfill leachate in chemical composition but contained negligible suspended solids and bacteria compared with real leachate. The removal of volatile fatty acids (VFAs), primarily acetate, in leachate as it passed through the medium was highly correlated with the precipitation of calcium carbonate (CaCO(3(s))) from solution. The columns experienced a decrease in drainable porosity from an initial value of about 0.38 to less than 0.1 after steady state chemical oxygen demand (COD) removal, resulting in a five-order magnitude decrease in hydraulic conductivity. The decrease in drainable porosity prior to steady state COD removal was primarily due to the growth of a biofilm on the medium surface. After steady state COD removal, calcium precipitation was at least equally responsible for the decrease in drainable porosity as biofilm growth. Clog composition analyses showed that CaCO(3(s)) was the dominant clog constituent and that 99% of the carbonate in the clog material was bound to calcium.  相似文献   

20.
Organic pollutants (e.g. polyaromatic hydrocarbons (PAH)) strongly sorb to carbonaceous sorbents such as black carbon and activated carbon (BC and AC, respectively). For a creosote-contaminated soil (Sigma15PAH 5500 mg kg(dry weight(dw))(-1)) and an urban soil with moderate PAH content (Sigma15PAH 38 mg kg(dw)(-1)), total organic carbon-water distribution coefficients (K(TOC)) were up to a factor of 100 above values for amorphous (humic) organic carbon obtained by a frequently used Linear-Free-Energy Relationship. This increase could be explained by inclusion of BC (urban soil) or oil (creosote-contaminated soil) into the sorption model. AC is a manufactured sorbent for organic pollutants with similar strong sorption properties as the combustion by-product BC. AC has the potential to be used for in situ remediation of contaminated soils and sediments. The addition of small amounts of powdered AC (2%) to the moderately contaminated urban soil reduced the freely dissolved aqueous concentration of native PAH in soil/water suspensions up to 99%. For granulated AC amended to the urban soil, the reduction in freely dissolved concentrations was not as strong (median 64%), especially for the heavier PAH. This is probably due to blockage of the pore system of granulated AC resulting in AC deactivation by soil components. For powdered and granulated AC amended to the heavily contaminated creosote soil, median reductions were 63% and 4%, respectively, probably due to saturation of AC sorption sites by the high PAH concentrations and/or blockage of sorption sites and pores by oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号