首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
从含镍二壬基萘磺酸-煤油溶液中反萃取镍   总被引:1,自引:0,他引:1  
采用简单反萃取法回收含镍二壬基萘磺酸(DNNSA)-煤油溶液中的镍。考察了反萃剂种类、反萃时间、反萃温度、油水比(负载镍的有机相与反萃剂的体积比)、反萃剂浓度等对反萃率的影响。实验结果表明,在硫酸作为反萃剂、反萃剂浓度为0.3mol/L、反萃时间为10min、反萃温度为30℃、油水比为3的工艺条件下,反萃率达81.5%。反萃取后得到的DNNSA可多次重复用于含镍废水的萃取处理,Ni2+萃取率基本保持不变。  相似文献   

2.
研究了H2O2催化氧化烟气脱硝工艺中H2O2质量分数、催化剂浓度和溶液pH对脱硝率的影响,采用 Box-Behnken响应曲面法优化了H2O2脱硝的工艺条件,得到了相应的数学模型,并进行了方差分析。结果表明,溶液pH、催化剂浓度、H2O2质量分数以及催化剂浓度和H2O2质量分数的一级交互作用对脱硝率的影响很显著,模型的决定系数为0.995 3,说明模型拟合效果很好。经模型优化分析的最优工艺条件为H2O2质量分数0.2%,催化剂浓度0.94 mmol/L,溶液pH 11.0,在此条件下处理进口流量3.5 L/min、 NO体积分数 2×10-4、O2体积分数10%、N2体积分数90%的烟气,液气比为8 L/m3,脱硝率达97%。  相似文献   

3.
以2,6-二氨基吡啶为原料,合成了功能单体2-丙烯酰-6-氨基吡啶,并将其与乙二醇二甲基丙烯酸酯共聚合成了聚合物吸附剂聚丙烯酰-6-氨基吡啶。考察了聚合物吸附剂对重金属离子的吸附分离性能。实验结果表明:在混合液中Cu2+,Zn2+,Cd2+,Ni2+的初始质量浓度均为10 mg/L、聚合物吸附剂加入量为5 g/L、溶液pH=7、吸附时间为10 min的条件下,聚合物吸附剂对各离子的吸附率均大于90%;采用浓度为0.5 mol/L的HCl溶液对吸附后的聚合物吸附剂进行洗脱,4种重金属离子的洗脱率均可达97%以上;该吸附剂具有很好的稳定性,重复使用11次后其对4种重金属离子的饱和吸附量均未有明显的下降。  相似文献   

4.
采用聚乙烯醇(PVA)、聚乙二醇(PEG)对海藻酸钠(SA)进行改性,制备了一种新型高效SA-PVA-PEG复合膜。研究了该复合膜对Cu2+的吸附效果。用IR和SEM等手段对复合膜进行了表征。表征结果显示,复合膜内部存在孔状结构,有利于吸附Cu2+。实验结果表明:在初始Cu2+质量浓度50 mg/L、复合膜加入量1 g/L、废水pH=5、吸附温度30 ℃、吸附时间60 min的最佳条件下,吸附率最高可达90.1%,吸附量达25.3 mg/g;复合膜吸附Cu2+的动力学过程可用二级动力学方程和Elovice方程进行拟合,吸附过程符合Langmuir单层吸附理论。采用浓度为1 mol/L的HCl溶液对吸附后的复合膜进行解吸,当解吸时间为2 min时,解吸率可达80.0%。  相似文献   

5.
采用非皂化P204和皂化P204萃取剂对不锈钢酸洗污泥的硫酸浸出液进行萃取。在浸出液pH为0.80、非皂化P204体积分数为25%、萃取剂与浸出液体积比为1∶2、萃取时间为5 min的条件下,Fe~(3+)萃取率达99.64%,Cr~(3+)和Ni~(2+)萃取率为3.98%和6.99%,一次萃余液pH为0.64。采用皂化P204对除Fe~(3+)后的一次萃余液进行萃取,在P204体积分数为25%、萃取剂与浸出液体积比为1∶2、萃取剂皂化率为60%、一次萃余液pH为1.50、萃取时间为5 min的条件下,Ni~(2+)萃取率为93.12%,Cr~(3+)萃取率为20.69%,二次萃余液pH为2.63。  相似文献   

6.
以三辛胺为载体,煤油为膜溶剂,NaOH为反萃剂,采用大块液膜法处理模拟含Cr(Ⅵ)废水.考察了Cr(Ⅵ)迁移的影响因素,实验结果表明:在料液相进水Cr(Ⅵ)质量浓度为1043.6 mg/L、料液相进水pH为1.1、反萃相中NaOH质量分数为20%、液膜相体积为100 mL、液膜相中三辛胺体积分数为15%、反应时间为50 min的条件下,料液相出水Cr(Ⅵ)质量浓度为0.5 mg/L;萃取36批废水后Cr(Ⅵ)浓缩比可达94.2%.  相似文献   

7.
考察了相比、水相pH、混合时间等因素对LIX84I萃取铜的影响,结果表明:这些因素对铜的萃取率都有一定的影响,最优化的条件是有机相为30%LIX84I+70%煤油、室温、相比=2:1、出口水相pH值=2.0、搅拌速度=910 r/min、萃取级数为3级,每级的时间为3 min.对铜进行三级萃取和一级反萃,可以得到符合电积要求的硫酸铜溶液,萃取率和反萃取率分别可以达到94.6%和97.8%.  相似文献   

8.
采用超声促进、Fe2+活化的K2S2O8/NaHSO3联合体系(US-Fe2+-K2S2O8/NaHSO3体系)降解罗丹明B(RhB)。考察了RhB模拟废水脱色效果的影响因素,并研究了不同处理方法的协同效应,推测了反应机理。实验结果表明:在反应温度25 ℃、初始pH 5.18、超声功率250 W、K2S2O8溶液(4.91 mmol/L)加入量1.2 mL、NaHSO3溶液(4.91 mmol/L)加入量1.2 mL、n(K2S2O8)∶n(Fe2+)=10、反应时间7 min的条件下,RhB模拟废水(50 mL)的脱色率达到89.45%;超声与Fe2+-K2S2O8/NaHSO3体系对RhB的降解产生了协同效应,降解反应符合表观一级反应动力学,速率常数增强因子可达13.6。自由基猝灭实验结果表明,硫酸根自由基和羟基自由基是攻击RhB 分子的活性自由基,硫酸根自由基起主要作用。  相似文献   

9.
以硅藻土为载体,采用溶胶-凝胶法引入金属氧化物SnO2和Fe2O3,制备了二元氧化物复合型SO42-/SnO2-Fe2O3-硅藻土固体酸催化剂。利用该催化剂与H2O2构成非均相类Fenton试剂氧化体系,催化H2O2产生氧化能力极强的·OH,用于处理实际翠蓝废水和模拟亚甲基蓝废水。催化剂的最佳制备条件为:H2SO4溶液的浓度3 mol/L,浸渍时间2.0 h,焙烧温度550 ℃,焙烧时间3.5 h,焙烧方式为随炉升降温。实验结果表明:采用在最佳工艺条件下制得的催化剂,处理实际翠蓝废水COD去除率可达79.5%、脱色率达99.6%;处理模拟亚甲基蓝废水COD去除率可达83.1%、脱色率达99.6%。  相似文献   

10.
以钛酸丁酯为钛源、粉末活性炭为载体,采用溶胶-凝胶法制备了活性炭负载型二氧化钛(TiO2/AC)复合催化剂,并运用XRD和FE-SEM技术对其进行了表征。在紫外光条件下,研究了TiO2/AC光催化降解布洛芬的影响因素。研究结果表明:布洛芬质量浓度为40 mg/L时,在室温、焙烧温度500 ℃、TiO2/AC催化剂加入量2.0 g/L、溶液pH 3.0的最佳条件下,光催化降解180 min时布洛芬的降解率达85.6%;阴离子Cl-和NO3-对布洛芬的降解有强烈的抑制作用;阳离子Fe2+和Cu2+及氧化性物种H2O2对布洛芬的降解均呈现两面性,随物种浓度的增加,布洛芬的降解率先增大后减小;该催化剂具有良好的稳定性,可多次重复使用而不失活。  相似文献   

11.
以钢铁盐酸酸洗废液为原料,亚硝酸钠为催化剂,氧气为氧化剂,在填料塔中催化氧化制备三氯化铁。考察了反应温度、催化剂加入量和添加方式、循环流量等对制备三氯化铁的影响。实验结果表明,在优化的工艺条件为料液预热温度为60 ℃、催化剂加入量为钢铁盐酸酸洗废液总质量的0.30%、料液循环流量6.0 m3/h的条件下,反应80~120 min,酸洗废液中的Fe2+完全氧化为Fe3+。  相似文献   

12.
采用水溶液聚合法,以丙烯酸、丙烯酰胺及改性蒙脱土为原料,纳米腐植酸为基体,N,N’-亚甲基双丙烯酰胺为交联剂,过二硫酸钾为引发剂,制备了丙烯酸-蒙脱土-丙烯酰胺/纳米腐植酸复合树脂(简称复合树脂)。考察了溶液pH、吸附时间、吸附温度、初始离子浓度等因素对复合树脂分别吸附Ni~(2+)和Cd~(2+)的影响。实验结果表明:在吸附温度35℃、吸附时间90 min、溶液pH为7、初始Ni~(2+)和Cd~(2+)的浓度分别为0.02 mol/L、复合树脂加入量16.7 g/L的条件下,Ni~(2+)和Cd~(2+)的吸附量分别为383.02 mg/g和359.27 mg/g;复合树脂吸附Ni~(2+)和Cd~(2+)的吸附等温线均满足Langmuir等温吸附方程;吸附过程均符合准二级动力学方程;复合树脂重复使用6次,其对Ni~(2+)和Cd~(2+)的吸附量分别降低了17.1%和9.3%。  相似文献   

13.
以乙醇为溶析剂,通过过滤—中和—蒸馏浓缩—溶析结晶等工序,从白炭黑废母液中回收硫酸钠。考察了硫酸钠回收效果的影响因素,并进行了热能消耗和处理成本的分析。实验结果表明:乙醇的加入量对硫酸钠溶解度和蒸馏浓缩过程有着显著影响;在蒸馏醇水比(乙醇与中性废母液的体积比)为0.27,浓缩废母液中硫酸钠质量浓度为69.27 g/L,溶析醇水比(乙醇与浓缩废母液的体积比)为1的最佳工艺条件下,白炭黑废母液中硫酸钠的一次回收率可达69.94%,硫酸钠产品的纯度达到97.3%。  相似文献   

14.
何雷晶  武斌  陈葵  周晓葵  曹鹏 《化工环保》2019,39(6):653-659
以NaClO_2-Fe~(3+)为复合吸收剂,在填料吸收塔中进行了脱硝实验。实验结果表明:Fe~(3+)能够显著提高NaClO_2的氧化活性,1.0 mmol/L NaClO_2溶液加入0.10 mmol/L Fe~(3+)后即可达到5.0 mmol/L NaClO_2溶液不加Fe~(3+)时的脱硝水平;在NaClO_2浓度1.0 mmol/L、Fe~(3+)浓度0.10 mmol/L、吸收液初始pH 3.75、反应温度60 ℃、液气比8 L/m~3的优化工艺条件下处理NO 140 mg/m~3的进气,NO氧化率和NO_x脱除率分别达到92.63%和83.62%。脱硝前后吸收液组成的测定结果表明:起主要脱硝作用的是ClO_2;反应消耗的NaClO_2与NO的摩尔比为1.06。通过补加消耗的NaClO_2可达同样的脱硝效果,循环3次后吸收液中的有效成分基本稳定。  相似文献   

15.
采用由C_1~C_4低碳醇组成的复配萃取剂萃取回收粉煤灰生产Al_2O_3废水(脱硅液)中的偏硅酸钠,在提取产品偏硅酸钠的同时回收脱硅液中的碱。直接进行萃取时偏硅酸钠易流失,萃取剂用量大,回收成本较高。将脱硅液浓缩后再进行萃取,萃取剂用量大幅减少,回收成本明显下降。将萃取剂成本与浓缩所需成本之和最低时的最佳浓缩比下、脱硅液与萃取剂体积比为1∶0.8时回收的偏硅酸钠干燥处理,干燥后的偏硅酸钠中Na_2O含量(w)大于20.5%,SiO_2含量大于20.0%,水不溶物含量小于0.05%,铁含量小于0.05%,白度大于70%,产品符合HG/T2568—2008《工业偏硅酸钠》标准。  相似文献   

16.
废气中的NO和SO2可通过钴氨吸收液去除,但钴氨吸收液中的Co~(2+)易被氧化成Co~(3+)而失去脱硝能力。为了实现Co~(2+)的再生,采用酒石酸溶液对活性炭进行改性,提高其对Co~(3+)的催化还原能力,考察了活性炭催化剂改性及活化条件对钴氨吸收液Co~(3+)还原率及NO去除率的影响。实验结果表明:在酒石酸溶液浓度为1.5 mol/L、改性时间为18 h、活化温度为400℃、活化时间为4 h的条件下,改性活性炭的催化性能最佳;Co~(3+)还原率为67.5%,比原炭提高了11.9百分点;对应的钴氨吸收液的NO去除率为86.0%,比原炭提高了26.0百分点。pHpzc测定、Boehm滴定和BET表征结果表明,与原炭相比,改性活性炭酸性增强,羧基和内酯基含量增加,微孔数目增加,比表面积增大。这些表面特性的改变使改性活性炭的催化性能得到改善。  相似文献   

17.
制备了改性SiO2气凝胶,考察了经不同类型、不同配比的改性剂改性的SiO2气凝胶对模拟含Fe3+废水的吸附处理效果。实验结果表明:改性SiO2气凝胶的最佳制备条件为三甲基氯硅烷(TMCS)作改性剂,V(TMCS)#x02236;V(正己烷)=1#x02236;5;当改性SiO2气凝胶加入量为75g/L、吸附时间为4h、Fe3+质量浓度为10mg/L时,模拟含Fe3+废水的Fe3+去除率为98.32%,剩余Fe3+质量浓度为0.168mg/L;采用改性SiO2气凝胶动态吸附处理流量为420mL/h、Fe3+质量浓度为100mg/L的模拟含Fe3+废水,吸附后废水中剩余Fe3+质量浓度仅为0.196mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号