首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

On-board emission measurements were performed on 49 light-duty gasoline vehicles in seven cities of China. Vehicle-specific power mode distribution and emission characteristics were analyzed based on the data collected. The results of our study show that there were significant differences in different types of roads. The emission factors and fuel consumption rates on arterial roads and residential roads were approximately 1.4–2 times those on freeways. The carbon monoxide, hydrocarbon, and nitrogen oxides emission factors of Euro II vehicles were on average 86.2, 88.2, and 64.5% lower than those of carburetor vehicles, respectively. The new vehicle emission standards implemented in China had played an important role in reducing individual vehicle emissions. More comprehensive measures need to be considered to reduce the total amount of emissions from vehicles.  相似文献   

2.
以公交车为例,利用OBS-2200和ELPI(electrical low pressure impactor)对深圳市重型柴油车(high-duty diesel vehicles,HDDVs)进行了3次在实际道路上的车载排放测试.根据测试数据计算了NOx和PM排放因子及百公里油耗,并分析了不同道路、不同工况对NOx...  相似文献   

3.
On-road vehicle tests of nine heavy-duty diesel trucks were conducted using SEMTECH-D, an emissions measuring instrument provided by Sensors, Inc. The total length of roads for the tests was 186 km. Data were obtained for 37,255 effective driving cycles, including 17,216 on arterial roads, 15,444 on residential roads, and 4595 on highways. The impacts of speed and acceleration on fuel consumption and emissions were analyzed. Results show that trucks spend an average of 16.5% of the time in idling mode, 25.5% in acceleration mode, 27.9% in deceleration mode, and only 30.0% at cruise speed. The average emission factors of CO, total hydrocarbons (THC), and NOx for the selected vehicles are (4.96±2.90), (1.88±1.03) and (6.54±1.90) g km−1, respectively. The vehicle emission rates vary significantly with factors like speed and acceleration. The test results reflect the actual traffic situation and the current emission status of diesel trucks in Shanghai. The measurements show that low-speed conditions with frequent acceleration and deceleration, particularly in congestion conditions, are the main factors that aggravate vehicle emissions and cause high emissions of CO and THC. Alleviating congestion would significantly improve vehicle fuel economy and reduce CO and THC emissions.  相似文献   

4.
Abstract

China’s national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing’s air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.  相似文献   

5.
Assessment of vehicular pollution in China   总被引:11,自引:0,他引:11  
As the motor vehicle population in China continues to increase at an annual rate of approximately 15%, air pollution related to vehicular emissions has become the focus of attention, especially in large cities. There is an urgent need to identify the severity of this pollution in China. Based on an investigation into vehicle service characteristics, this study used a series of driving cycle tests of in-use Chinese motor vehicles for their emission factors in laboratories, which indicated that CO and HC emission factors are 5-10 times higher, and NOx 2-5 times higher, than levels in developed countries. The MOBILE5 model was adapted to the Chinese situation and used to calculate the emission of pollutants from motor vehicles. Results show that vehicle emission is concentrated in major cities, such as Beijing, Guangzhou, Shanghai, and Tianjin. Motor vehicle emissions contribute a significant proportion of pollutants in those cities, with contribution rates of CO and NOx greater than 80% and 40%, respectively, in Beijing and Guangzhou. Urban air quality is far worse than the national ambient air quality standard. In conclusion, although China has a relatively small number of motor vehicles, most of them are concentrated within metropolitan areas, and their emissions are closely related to urban air pollution problems in large cities.  相似文献   

6.
The testing re-entrained aerosol kinetic emissions from roads technique is compared with distance-based emission factors (EFs; g/VKT) measured downwind of a dirt road by using towers instrumented with real-time meteorological and particle sensors at multiple heights. The emission potential (EP), defined as the EF divided by the vehicle speed (m/sec), and weight index permits the intercomparison of emissions from multiple roadways surveyed by the TRAKER vehicle. A survey of 72 km of unpaved roads on the Ft. Bliss Military Base near El Paso, Texas, indicated that 60% of all measured EPs fell between 6.7 (g/VKT)/(m/sec) and 9.6 (g/VKT)/(m/sec). The EP measured across the base was approximately 50% lower than those collected in the vicinity of the instrumented towers. This implies that EFs measured for other vehicles on the same test section should be reduced by 50% to more accurately represent EFs for the entire military base. Using geographic information system-based soil maps, the inferred EFs are related to differences in soil types over the survey area. Variations among five different soil types accounted for <10% of variation in EP. Individual measurements using the testing re-entrained aerosol kinetic emissions from roads technique did show larger spatial variations in EP; however, these were not effectively captured by the soil classifications, partly because of the comparatively coarse spatial classification used in the soil survey data.  相似文献   

7.
机动车污染排放模型研究综述   总被引:20,自引:0,他引:20  
过去几十年,为了掌握机动车污染排放的规律和特征,向决策者提供科学有效的机动车污染控制措施,研究者们致力于研究机动车污染物排放的物化原理和影响机动车污染的主要因素,并据此建立多种尺度的机动车排放模型,以模拟城市区域或者街道的污染物排放.为了分析机动车的瞬态排放特征,目前的机动车排放模型研究正逐渐从宏观向微观发展,排放测试方法注重获取逐秒的排放数据,排放模型模拟的时间尺度和空间尺度逐步趋向微观.此外,机动车模型研究正趋向与交通模型进行耦合,从而揭示机动车在实际道路交通流中的排放特征.从机动车排放的主要影响因素、机动车排放测试、机动车排放因子模型及机动车排放清单等4个方面综述了国内外机动车排放研究现状和发展动向,对比并评价各种机动车排放模型方法的优缺点和适用范围,对我国的机动车排放模型发展方向进行了展望.  相似文献   

8.
China's national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing's air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.  相似文献   

9.
A methodology is presented for estimating emissions of passenger cars and light commercial vehicles complying with future European Union emission standards, which introduces appropriate reductions over the emission factors of existing vehicle technologies. For three-way catalyst gasoline vehicles, future real-world emissions are assumed to decrease by the same ratio as emission standards. Additionally, distinction is made between emissions during the thermally stabilised emission control system operation and emissions during the cold-start phase, where reductions are mainly due to the decreasing light-off time of future catalyst technologies. In case of diesel vehicles, some of the emission standards, such as 1993 CO, did not represent the actual emission level of vehicles at the time. Therefore, reductions brought over the 1993 emission factor are based both on relevant emission standards reductions and on technological considerations. In a second step, the derived emission factors are corrected to account for vehicle age and fuel quality effects. Vehicle age is introduced in the calculation via emission degradation functions of the total vehicle-accumulated mileage. The impact of improved fuels on the emissions of existing and future vehicle technologies is also modelled by applying correction factors depending on fuel specifications. A number of examples are given by applying the methodology on forecast activity data for different European countries to illustrate the expected effects of future vehicle technologies and fuels.  相似文献   

10.
Abstract

A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Gasoline use is known at the state level from sales tax data, and may be disaggregated to individual air basins. A fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Stabilized exhaust emissions of CO were estimated to be 4400 tons/day for cars and 1500 tons/day for light-duty and medium- duty trucks, with an estimated uncertainty of ±20% for cars and ±30% for trucks. Total motor vehicle CO emissions, including incremental start emissions and emissions from heavy-duty vehicles were estimated to be 7900 tons/day. Fuelbased inventory estimates were greater than those of California's MVEI 7F model by factors of 2.2 for cars and 2.6 for trucks. A draft version of California's MVEI 7G model, which includes increased contributions from high-emitting vehicles and off-cycle emissions, predicted CO emissions which closely matched the fuel-based inventory. An analysis of CO mass emissions as a function of vehicle age revealed that cars and trucks which were ten or more years old were responsible for 58% of stabilized exhaust CO emissions from all cars and trucks.  相似文献   

11.
Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost city modeled.  相似文献   

12.
Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 microns, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM2.5, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict the airborne concentration in the urban environment is presented. The trial was on the A6 trunk road where it passes through Loughborough, a medium-size town in the English East Midlands. This evaluation for TSP and PM10 was carried out for a range of traffic fleet compositions, speeds, and meteorological conditions. Given the limited basis of the evaluation, encouraging agreement was shown between predicted and measured concentrations.  相似文献   

13.
To improve the accuracy and applicability of vehicular emission models, this study proposes a speed and vehicle-specific power (VSP) modeling method to estimate vehicular emissions and fuel consumption using data gathered by a portable emissions monitoring system (PEMS). The PEMS data were categorized into discrete speed-VSP bins on the basis of the characteristics of vehicle driving conditions and emissions in Chinese cities. Speed-VSP modal average rates of emissions (or fuel consumption) and the time spent in the corresponding speed-VSP bins were then used to calculate the total trip emissions (or fuel consumption) and emission factors (or fuel economy) under specific average link speeds. The model approach was validated by comparing it against measured data with prediction errors within 20% for trip emissions and link-speed-based emission factors. This analysis is based on the data of light-duty gasoline vehicles in China; however, this research approach could be generalized to other vehicle fleets in other countries. This modeling method could also be coupled with traffic demand models to establish high-resolution emissions inventories and evaluate the impacts of traffic-related emission control measures.  相似文献   

14.
We used Fourier Transform Infrared Spectroscopy (FTIR) to measure tailpipe ammonia emissions from a representative fleet of 41 light and medium-duty vehicles recruited in the California South Coast Air Basin. A total of 121 chassis dynamometer emissions tests were conducted on these vehicles and the test results were examined to determine the effects of several key variables on ammonia emissions. Variables included vehicle type, driving cycle, emissions technology, ammonia precursor emissions (i.e. CO and NOx) and odometer readings/model year as a proxy for catalyst age. The mean ammonia emissions factor was 46 mg km?1 (σ = 48 mg km?1) for the vehicle fleet. Average emission factors for specific vehicle groups are also reported in this study. Results of this study suggest vehicles with the highest ammonia emission rates possess the following characteristics: medium-duty vehicles, older emissions technologies, mid-range odometer readings, and higher CO emissions. In addition, vehicles subjected to aggressive driving conditions are likely to be higher ammonia emitters. Since the vehicles we studied were representative of recent model year vehicles and technologies in urban airsheds, the results of our study will be useful for developing ammonia emissions inventories in Los Angeles and other urban areas where California-certified vehicles are driven. However, efforts should also be made to continue emissions testing on in-use vehicles to ensure greater confidence in the ammonia emission factors reported here.  相似文献   

15.
In recent years sophisticated technologies have been developed to control vehicle speed based on the type of road the vehicle is driven on using Global Positioning Systems and in-car technology that can alter the speed of the vehicle. While reducing the speed of road vehicles is primarily of interest from a safety perspective, vehicle speed is also an important determinant of vehicle emissions and thus these technologies can be expected to have impacts on a range of exhaust emissions. This work analyses the results from a very large, comprehensive field trial that used 20 instrumented vehicles with and without speed control driven almost 500,000 km measuring vehicle speed at 10 Hz. We develop individual vehicle modal emissions models for CO2 for 30 Euro III and Euro IV cars at a 1-Hz time resolution. Generalized Additive Models were used to describe how emissions from individual vehicles vary depending on their driving conditions, taking account of variable interactions and time-lag effects. We quantify the impact that vehicle speed control has on-vehicle emissions of CO2 by road type, fuel type and driver behaviour. Savings in CO2 of ≈6% were found on average for motorway-type roads when mandatory speed control was used compared with base case conditions. For most other types of road, speed control has very little effect on emissions of CO2 and in some cases can result in increased emissions for low-speed limit urban roads. We also find that there is on average a 20% difference in CO2 emission between the lowest and highest emitting driver, which highlights the importance of driver behaviour in general as a means of reducing emissions of CO2.  相似文献   

16.
ABSTRACT

Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 um, either from published data or from user-defined size distributions.

A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM25, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway).

A preliminary evaluation of PMFAC with an available dispersion model to predict the airborne concentration in the urban environment is presented. The trial was on the A6 trunk road where it passes through Loughborough, a medium-size town in the English East Midlands. This evaluation for TSP and PM10 was carried out for a range of traffic fleet compositions, speeds, and meteorological conditions. Given the limited basis of the evaluation, encouraging agreement was shown between predicted and measured concentrations.  相似文献   

17.
As part of the Gasoline/Diesel PM Split Study, relatively large fleets of gasoline vehicles and diesel vehicles were tested on a chassis dynamometer to develop chemical source profiles for source attribution of atmospheric particulate matter in California's South Coast Air Basin. Gasoline vehicles were tested in cold-start and warm-start conditions, and diesel vehicles were tested through several driving cycles. Tailpipe emissions of particulate matter were analyzed for organic tracer compounds, including hopanes, steranes, and polycyclic aromatic hydrocarbons. Large intervehicle variation was seen in emission rate and composition, and results were averaged to examine the impacts of vehicle ages, weight classes, and driving cycles on the variation. Average profiles, weighted by mass emission rate, had much lower uncertainty than that associated with intervehicle variation. Mass emission rates and elemental carbon/organic carbon (EC/OC) ratios for gasoline vehicle age classes were influenced most by use of cold-start or warm-start driving cycle (factor of 2-7). Individual smoker vehicles had a large range of mass and EC/OC (factors of 40 and 625, respectively). Gasoline vehicle age averages, data on vehicle ages and miles traveled in the area, and several assumptions about smoker contributions were used to create emissions profiles representative of on-road vehicle fleets in the Los Angeles area in 2001. In the representative gasoline fleet profiles, variation was further reduced, with cold-start or warm-start and the representation of smoker vehicles making a difference of approximately a factor of two in mass emission rate and EC/OC. Diesel vehicle profiles were created on the basis of vehicle age, weight class, and driving cycle. Mass emission rate and EC/OC for diesel averages were influenced by vehicle age (factor of 2-5), weight class (factor of 2-7), and driving cycle (factor of 10-20). Absolute and relative emissions of molecular marker compounds showed levels of variation similar to those of mass and EC/OC.  相似文献   

18.
Motor vehicles are one of the largest sources of air pollutants worldwide. Despite their importance, motor vehicle emissions are inadequately understood and quantified, esp. in developing countries. In this study, the real-world emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured using an on-road remote sensing system at five sites in Hangzhou, China in 2004 and 2005. Average emission factors of CO, HC and NOx for petrol vehicles of different model year, technology class and vehicle type were calculated in grams of pollutant per unit of fuel use (g l−1) from approximately 32,260 petrol vehicles. Because the availability of data used in traditional on-road mobile source estimation methodologies is limited in China, fuel-based approach was implemented to estimate motor vehicle emissions using fuel sales as a measure of vehicle activity, and exhaust emissions factors from remote sensing measurements. The fuel-based exhaust emission inventories were also compared with the results from the recent international vehicle emission (IVE) model. Results show that petrol vehicle fleet in Hangzhou has significantly high CO emissions, relatively high HC and low NOx, with the average emission factors of 193.07±15.63, 9.51±2.40 and 5.53±0.48 g l−1, respectively. For year 2005 petrol vehicles exhaust emissions contributed with 182,013±16,936, 9107±2255 and 5050±480 metric ton yr−1 of CO, HC and NOx, respectively. The inventories are 45.5% higher, 6.6% higher and 53.7% lower for CO, HC and NOx, respectively, than the estimates using IVE travel-based model. In addition, a number of insights about the emission distributions and formation mechanisms have been obtained from an in-depth analysis of these results.  相似文献   

19.
This paper discusses results from a vehicular emissions research study of over 350 vehicles conducted in three communities in Los Angeles, CA, in 2010 using vehicle chase measurements. The study explores the real-world emission behavior of light-duty gasoline vehicles, characterizes real-world super-emitters in the different regions, and investigates the relationship of on-road vehicle emissions with the socioeconomic status (SES) of the region. The study found that in comparison to a 2007 earlier study in a neighboring community, vehicle emissions for all measured pollutants had experienced a significant reduction over the years, with oxides of nitrogen (NOX) and black carbon (BC) emissions showing the largest reductions. Mean emission factors of the sampled vehicles in low-SES communities were roughly 2–3 times higher for NOX, BC, carbon monoxide, and ultrafine particles, and 4–11 times greater for fine particulate matter (PM2.5) than for vehicles in the high-SES neighborhood. Further analysis indicated that the emission factors of vehicles within a technology group were also higher in low-SES communities compared to similar vehicles in the high-SES community, suggesting that vehicle age alone did not explain the higher vehicular emission in low-SES communities.

Evaluation of the emission factor distribution found that emissions from 12% of the sampled vehicles were greater than five times the mean from all of the sampled fleet, and these vehicles were consequently categorized as “real-world super-emitters.” Low-SES communities had approximately twice as many super-emitters for most of the pollutants as compared to the high-SES community. Vehicle emissions calculated using model-year-specific average fuel consumption assumptions suggested that approximately 5% of the sampled vehicles accounted for nearly half of the total CO, PM2.5, and UFP emissions, and 15% of the vehicles were responsible for more than half of the total NOX and BC emissions from the vehicles sampled during the study.

Implications: This study evaluated the real-world emission behavior and super-emitter distribution of light-duty gasoline vehicles in California, and investigated the relationship of on-road vehicle emissions with local socioeconomic conditions. The study observed a significant reduction in vehicle emissions for all measured pollutants when compared to an earlier study in Wilmington, CA, and found a higher prevalence of high-emitting vehicles in low-socioeconomic-status communities. As overall fleet emissions decrease from stringent vehicle emission regulations, a small fraction of the fleet may contribute to a disproportionate share of the overall on-road vehicle emissions. Therefore, this work will have important implications for improving air quality and public health, especially in low-SES communities.  相似文献   


20.
ABSTRACT

Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NOx), and particle mass with aerodynamic diameter below 2.5 μm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NOx, black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NOx and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NOx tended to cluster among the same vehicles.

IMPLICATIONS This study presents the characterization of on-road vehicle emissions in Wilmington, CA, by sampling individual vehicle plumes. Approximately 5% of the vehicles were high emitters, whose emissions were more than 5 times the fleet-average values. These high emitters were responsible for 30% and more than 50% of the average emission factors of LDGVs and HDDVs, respectively. It is likely that as the overall fleet becomes cleaner due to more stringent regulations, a small fraction of the fleet may contribute a growing and disproportionate share of the overall emissions. Therefore, long-term changes in on-road emissions need to be monitored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号