首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
姜令萍  宋英 《山东环境》1998,(4):17-17,19
前言:溶解氧(简称DO)是存在于水中的游离氧。水中溶解氧与气象要素及环境要素都有着密切关系。在溶解氧测定中,影响测定因素很多,如:样品采集、方法选择、酸化及滴定、操作不当,都会给分析结果带来误差。本文针对溶解氧测定中可能出现的问题,从五个方面进行了研...  相似文献   

3.
分析总结了便携式溶解氧仪法测定水中溶解氧应注意的一些问题,提出了相应的解决措施,以确保水中溶解氧分析测定结果满足环境监测数据"五性"要求。  相似文献   

4.
溶解氧指的是水体与大气之间经过氧气交换之后或者经过各种化学生物反应之后,溶解在水中的氧。天然水和废水中的溶解氧的浓度是不相同的,其浓度取决于水体的各种性质,比如物理性质、化学性质等。对水中溶解氧进行测定,是水污染控制以及废水处理过程中的重要措施,对水中溶解氧进行测定,也是水体污染程度的衡量指标。测量水中溶解氧十分重要。本文浅述水中溶解氧测定过程中的几个重要影响因素。  相似文献   

5.
方韬  赵玲 《能源环境保护》2011,25(1):51-55,59
根据国家测试废水中悬浮物浓度的分析标准,在采用不同生产厂家生产的微孔滤膜(孔径0.45?m,直径50mm)测试煤矿矿井水时,常碰到比较清洁的水样容易出现负值的现象。通过对微孔滤膜的反复实验并深入分析,提出了如何改进"滤膜准备"的操作步骤建议,对更加真实反映水体中悬浮物浓度具有一定意义。  相似文献   

6.
水中的溶解氧可以反映水体受污染的程度,在环境监测中占有重要地位。溶解氧的测定以往多采用化学分析法,该方法准确度较好,但操作繁琐;用仪器分析法测定,具有较高的灵敏度,但仪器价格较贵,不利于推广普及。为此,我们试验用简易的方法对水中的溶解氧进行测定。使用该方法完成一次测定只需几分钟,且不需要特殊设备,对于水质监测中溶解氧的测定,具有重要的现实意义。  相似文献   

7.
悬浮物是造成水浑浊的主要原因。目前对水质悬浮物的检测采用重量法,该方法测量准确,但操作复杂,有许多实验细节必须严格控制,否则影响测量结果,但选用悬浮物分光光度测量悬浮物具有操作更加简单、监测分析速度快、节省能源等优点。  相似文献   

8.
分光光度法测定水中溶解氧   总被引:1,自引:0,他引:1  
研究用分光光度法间接测定水中溶解氧(DO)的方法,在水样中加入MnSO4和甲醛肟溶液,在pH为10.0~11.0的碱性溶液中,锰(Ⅱ)被溶解氧氧化为锰(Ⅳ),与甲醛肟生成棕色络合物,在波长λ=450nm条件下,用分光光度法测定其吸光度值,确定锰(Ⅳ)的含量,通过公式间接求得溶解氧的含量,DO的测定范围为0.6~12mg/L,此法对各种DO样品的测定结果与DO仪的结果高度吻合。  相似文献   

9.
水和废水中的悬浮物(SS)即总不可滤残渣,是水环境的重要因素之一,也是环境监测的一项重要指标。本文对水和废水中悬浮物的各种影响因素,以及实际操作中遇到的问题进行分析,以便得到更精准的数据。  相似文献   

10.
11.
水中溶解氧快速测试管的研制   总被引:1,自引:0,他引:1  
水中溶解氧不稳定,需要现场即时测定。本文旨在研究现场快速测定水中的溶解氧。本研究运用比色分析的朗伯——比尔定律和真空工艺设计,将复杂繁琐的实验室测试方法和操作程序有机的融合在测试管中。该测试管能快速、简便地测定水中的溶解氧。测定范围为0.01—12mg/1,检出限为0.0lmg/1。常规法测定时间需要3—5小时,而该测试管法仅需1—2分钟,分析成本也大为降低。  相似文献   

12.
采用微电极测定溶解氧有效扩散系数的研究   总被引:2,自引:0,他引:2  
周小红  施汉昌  何苗 《环境科学》2007,28(3):598-602
生物载体内部溶解氧的传质是影响载体同步硝化反硝化性能的重要因素.介绍了一种以溶解氧微电极为测试工具,获得球形生物载体内部溶解氧扩散系数的方法.采用自制的溶解氧微电极检测沿载体半径方向上的溶解氧分布,结合扩散-反应方程拟合获得载体内部的溶解氧有效扩散系数.结果表明,在载体填充率为25%的情况下,连续流球形载体反应器可实现同步硝化反硝化,对有机物的去除负荷达到5.6 kg/(m3·d).沿载体半径方向里层1/2区域范围内溶解氧消耗为零,载体内能够形成明显的缺氧/厌氧区.溶解氧分布曲线的拟合结果表明,载体内部溶解氧有效扩散系数为0.017?2 m2/d,传质过程以紊动传质为主.  相似文献   

13.
水质五日生化需氧量测量的关键是用碘量法测水中溶解氧的含量,经过分析碘量法测定水中溶解氧含量测量不确定度的影响因素,认为测量的重复性的不确定度分量最大,其次是样品中溶液的体积,滴定溶液的体积和滴定溶液的浓度等不确定度分量.计算得到水中五日生化需氧量的测定结果的合成不确定度为6.4mg/L,扩展不确定度为12.8mg/L.  相似文献   

14.
松花江同江断面溶解氧含量的相关分析   总被引:2,自引:0,他引:2  
对松花江同江断面3年自动监测的数据进行分析,得出该断面溶解氧浓度的影响因子为高锰酸盐指数和氨氮,并分别总结出不同年度、不同水温下的回归方程。多因素相关分析结果显示,高锰酸盐指数、氨氮的含量与水体中的溶解氧浓度呈显著性负相关关系。  相似文献   

15.
溶解氧对水质变化和沉积物吸磷过程的影响   总被引:3,自引:1,他引:3  
通过室内模拟实验,研究有光和黑暗条件下,富氧和缺氧环境对东太湖沉积物吸收磷酸盐过程的影响.研究结果表明沉积物能够吸收上覆水中高质量浓度的磷酸盐,但吸收量和吸收速度随环境条件的不同而不同;缺氧环境上覆水中的pH高于或略高于相同光照条件下的富氧环境;实验开始的前20d,富氧环境有利于沉积物吸附上覆水中的磷酸盐,并快速达到吸附平衡,缺氧环境则相反;实验开始20d后,有光缺氧组上覆水中磷酸盐质量浓度开始迅速下降,且明显低于其他实验条件;富氧环境沉积物中总磷的增加量高于缺氧环境,其含量顺序为无光富氧>有光富氧>有光缺氧>无光缺氧;溶解氧对沉积物中铁结合态磷和钙结合态磷含量的影响较大,对有机磷含量的影响不大.  相似文献   

16.
珠江广州河段局部水体溶解氧低的主要原因分析   总被引:26,自引:0,他引:26  
珠江广州河段10多a来的水质监测数据表明,BOD5不高,但DO较低.这种特征至今仍未改变,甚至发展到局部水质出现发黑发臭的现象.文章从污染物耗氧、污染物降解能力、水体氧平衡和水文条件等方面剖析这种水质污染的原因.   相似文献   

17.
长江口溶解氧的分布特征及影响因素研究   总被引:25,自引:6,他引:25  
张莹莹  张经  吴莹  朱卓毅 《环境科学》2007,28(8):1649-1654
根据2006-06、2006-08、2006-10对长江口及其毗邻海域的大面调查,分析航次B断面上的溶解氧及营养盐的分布特征,并对长江口外溶解氧低值的成因及其与海水稳定度、营养盐的关系进行初步探讨.结果表明,在6月航次中,DO值随着离岸距离的增加而逐渐增加,底层的DO值低于表层.8月份长江口及其邻近水域底层明显出现低氧状态,DO的最低值仅为1.1 mg·L-1,该断面表观耗氧量AOU一般在2.79 mg·L-1以上,有氧的亏损发生,形成原因主要是海水层状结构稳定水交换较弱和有机物分解耗氧.10月份,海水层状结构发生变化,上下水层的垂直混合作用加剧,B断面DO分布随着离岸距离的增加逐渐增加.相关性分析显示,表底层的ΔDO与ΔρΔZ、ΔNO-3和ΔDIP都达到显著相关的水平.其中ΔDO与ΔρΔZ呈极显著的正相关,而与ΔNO-3、ΔDIP呈显著负相关关系.长江径流N、P污染物输入的不断增加为低氧区域表层浮游植物的生长提供了丰富的营养盐,从而加剧了该水域的氧亏损.  相似文献   

18.
不同溶解氧条件下沉积物-水体系磷循环   总被引:1,自引:0,他引:1  
磷是控制富营养化水平和水环境演变的关键元素.沉积物-间隙水体系是影响近海水体磷循环的主要界面,而上覆水溶解氧(DO)则是影响这一界面磷转化行为和界面通量的控制因子.针对近海环境特征,利用沉积物多管培养装置进行室内实验和动力学过程研究,探讨了DO变化对沉积物-间隙水体系磷的赋存形态、转化和释放的影响.结果表明,上覆水DO变化对沉积物-水界面溶解态活性磷酸盐(DRP)交换通量有显著的影响,低氧条件下沉积物具有较富氧和无氧更高的DRP交换通量;富氧条件下沉积物中总磷在表层富集量最高,具有较高的保存能力,低氧和无氧状态下沉积物对磷的保存能力降低;低氧条件下沉积物中铁结合磷的还原溶解和有机质的矿化是水体的主要磷源.在不同DO条件下,磷的转换呈现出差异化的特征,其中低氧状态下沉积物-水界面的变化和理想的早期成岩模式最为接近.可见,溶解氧对沉积物-间隙水体系磷的释放和转化有着显著的影响,是控制磷循环的重要因素.  相似文献   

19.
水体中饱和溶解氧的求算方法探讨   总被引:12,自引:0,他引:12  
根据标准大气压和不同水温下的饱和溶解氧浓度值回归出饱和溶解氧浓度值随水温的变化公式,并探讨了水体中饱和溶解氧浓度与大气压的关系,结果表明,计算结果与实测值的相对误差在±0.5%范围内。   相似文献   

20.
溶解氧对厌氧颗粒污泥活性的影响   总被引:2,自引:0,他引:2  
采用血清瓶培养法,以厌氧膨胀颗粒污泥床(EGSB)反应器中接种的厌氧颗粒污泥为对象,研究了溶解氧(DO)对其产甲烷活性的影响.结果表明,水中溶解氧的升高会致使厌氧颗粒污泥的活性降低.常温22℃下,当溶解氧浓度从000mg/L上升到700mg/L时,其最大比产甲烷速率(SMA)值先后两次分别由75.9 mL·(g·d)-1, 91.1  mL·(g·d)-1下降到47.6  mL·(g·d)-1,71.4 mL·(g·d)-1.但温度的升高可以显著提高其活性并削弱这种变化趋势.与第1次产气实验结果相比,恒温28℃与35℃时,SMA值分别平均提高了54.0%和114.4%.进水中溶解氧的存在并不会对处理系统的运行造成不利影响,厌氧颗粒污泥对溶解氧有较强的耐受性和适应能力.因此,在工程实践中可以不考虑溶解氧因素的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号