首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Process hazard analysis (PHA) studies (e.g. HAZOP) identify hazard scenarios and each scenario is examined individually to decide whether risk reduction measures are needed. However, much more can be done to benefit from the contents of studies.PHA studies contain so much data that a manual review is precluded from yielding insights into their results. Fortunately, valuable information can be extracted using metrics and analytics that consider all the contents of a PHA study. The management of safety, operability, reliability, utilization, and loss prevention can all be improved.Metrics evaluate the contents of PHA studies to provide insights into the safety of processes and the quality of studies. Measures of process safety and study quality can be compared with norms to identify possible departures that may need to be addressed.Rather than focusing decision making on the risks of individual hazard scenarios, as is common practice, analytics enable a deeper analysis of the entire set of scenarios for a process. This enables better decisions to be made on where and how risk reduction resources should be allocated. Analytics can also be used to prioritize maintenance, training, and other activities.Various analytics and metrics for PHA studies are described together with examples that illustrate their use.  相似文献   

2.
Organic hydride hydrogen refueling stations have been remarked as stations that can employ a practicable method based on the organic chemical hydride system involving methylcyclohexane (MCH) for the transport of hydrogen. This station has advantages in that the storage and transportation of MCH does not require a large amount of energy compared to compressed and liquefied hydrogen, and the system can use existing infrastructure. This type of station involves some hazardous materials, and thus, scenario identifications and risk assessments have been performed by researchers. However, the sample of studies available have employed a conceptual design model, and they did not identify concrete scenarios triggered by internal factors. Therefore, the purpose of this study is to identify accidental scenarios caused by internal factors that can affect an organic hydride hydrogen refueling station. In this study, we used Hazard and Operability study (HAZOP) and examined safety measures for the scenarios. As a result of the HAZOP, 105 accidental scenarios were identified and classified into the two following groups; (i) the scenarios assumed that the substances were ignited after they were released to the atmosphere, and (ii) the scenarios assumed that the substances were ignited in the process before they were released. Significant scenarios in group (i) were MCH or toluene pool fires, hydrogen jet fires, vapor gas explosions, or flash fires. The significant scenarios classified in (ii) were newly identified in this study. The scenarios include the explosion of the explosive mixture formed by the gaseous phase of toluene and oxygen from the vent line connected to the tank due to the static electric charge in the tank. For each scenario, safety measures to prevent the progression of the accident scenario were examined with reference to the current laws and regulations in Japan.  相似文献   

3.
Hazard and Operability (HAZOP) studies are conducted to identify and assess potential hazards which originate from processes, equipment, and process plants. These studies are human-centered processes that are time and labor-intensive. Also, extensive expertise and experience in the field of process safety engineering are required. There have been several attempts by different research groups to (semi-)automate HAZOP studies in the past. Within this research, a knowledge-based framework for the automatic generation of HAZOP worksheets was developed. Compared to other approaches, the focus is on representing semantic relationships between HAZOP relevant concepts under consideration of the degree of abstraction. In the course of this, expert knowledge from the process and plant safety (PPS) domain is embedded within the ontological model. Based on that, a reasoning algorithm based on semantic reasoners is developed to identify hazards and operability issues in a HAZOP similar manner. An advantage of the proposed method is that by modeling causal relationships between HAZOP concepts, automatically generated but meaningless scenarios can be avoided. The results of the enhanced causation model are high quality extended HAZOP worksheets. The developed methodology is applied within a case study that involves a hexane storage tank. The quality and quantity of the automatically generated results agree with the original worksheets. Thus the ontology-based reasoning algorithm is well-suited to identify hazardous scenarios and operability issues. Node-based analyses involving multiple process units can also be carried out by a slight adjustment of the method. The presented method can help to support HAZOP study participants and non-experts in conducting HAZOP studies.  相似文献   

4.
The identification and screening of scenarios has been identified as a source of variation in Layers of Protection Analysis (LOPA). Often the experience of the analyst is a significant factor in determining what scenarios are evaluated and the worst credible consequences. This paper presents a simplified chemical process risk analysis that is effective in providing a semi-quantitative measure of consequence that may include human harm and is independent of the analyst. This process may be used in evaluation of Management of Change, inherently safer design decisions for capital projects and LOPA re-validation. Conditional and relational logic may be captured with the use of simple spreadsheets to further improve overall efficiency. For example, this method minimizes the overall time required for scenario development and re-validation relative to Hazard and Operability studies (HAZOP).The technique simplifies established models used by engineers engaged in the operation or design of a chemical manufacturing facility without special software or training. The results of this technique are realistic and may be directly compared with corporate or regulatory guidelines for risk of fatality or injury. At each step in the risk analysis process, more detailed or sophisticated methods may be used to refine the technique. Furthermore, results from any step may indicate that the hazard from a specific scenario case is not sufficient to continue with subsequent analysis steps.  相似文献   

5.
HAZOP分析中LOPA的应用研究   总被引:6,自引:1,他引:5  
通过分析危险与可操作性研究(HAZOP)方法的不足和保护层分析(LOPA)方法的功能,提出将LOPA融入HAZOP分析中,能进一步提高HAZOP的事故预防能力和丰富HAZOP的分析结果。介绍LOPA基本方法,阐述LOPA融入HAZOP的机理、衔接关系及分析步骤,并通过一个化工工艺流程危险性分析实例说明LOPA的作用及如何将LOPA融入HAZOP分析中。结果表明:在HAZOP分析中融入LOPA方法,能实现对现有保护措施的可靠性进行量化评估,确定其消除或降低风险的能力,从而寻求是否需要附加减少风险的安全保护措施。  相似文献   

6.
HAZOP (Hazard and Operability) studies began about 40 years ago, when the Process Industry and complexity of its operations start to massively grow in different parts of the world. HAZOP has been successfully applied in Process Systems hazard identification by operators, design engineers and consulting firms. Nevertheless, after a few decades since its first applications, HAZOP studies are not truly standard in worldwide industrial practice. It is common to find differences in its execution and results format. The aim of this paper is to show that in the Mexican case at National level in the oil and gas industry, there exist an explicit acceptance risk criteria, thus impacting the risk scenarios prioritizing process. Although HAZOP studies in the Mexican oil & gas industry, based on PEMEX corporate standard has precise acceptance criteria, it is not a significant difference in HAZOP applied elsewhere, but has the advantage of being fully transparent in terms of what a local industry is willing to accept as the level of risk acceptance criteria, also helps to gain an understanding of the degree of HAZOP applications in the Mexican oil & gas sector. Contrary to this in HAZOP ISO standard, risk acceptance criteria is not specified and it only mentions that HAZOP can consider scenarios ranking. The paper concludes indicating major implications of risk ranking in HAZOP, whether before or after safeguards identification.  相似文献   

7.
An extended hazard and operability (HAZOP) analysis approach with dynamic fault tree is proposed to identify potential hazards in chemical plants. First, the conventional HAZOP analysis is used to identify the possible fault causes and consequences of abnormal conditions, which are called deviations. Based on HAZOP analysis results, hazard scenario models are built to explicitly represent the propagation pathway of faults. With the quantitative analysis requirements of HAZOP analysis and the time-dependent behavior of real failure events considered, the dynamic fault tree (DFT) analysis approach is then introduced to extend HAZOP analysis. To simplify the quantitative calculation, the DFT model is solved with modularization approach in which a binary decision diagram (BDD) and Markov chain approach are applied to solve static and dynamic subtrees, respectively. Subsequently, the occurrence probability of the top event and the probability importance of each basic event with respect to the top event are determined. Finally, a case study is performed to verify the effectiveness of the approach. Results indicate that compared with the conventional HAZOP approach, the proposed approach does not only identify effectively possible fault root causes but also quantitatively determines occurrence probability of the top event and the most likely fault causes. The approach can provide a reliable basis to improve process safety.  相似文献   

8.
Of the numerous inherent safety assessment tools, a dynamic metric capable of investigating and incorporating the temporal risk evolution when conducting Inherently Safer Modifications (ISMs) is yet to be established. To this end, this work developed a Dynamic Inherent Safety Metric (DISM) and validated its functionality and viability through a case study. Firstly, the Information-Flow-based Accident-causing Model (IFAM) was adapted to construct the topology of Bayesian Networks (BN). Then, Bayesian deductive reasoning was executed to do crucial risk identification by ranking posterior probabilities. Finally, risk-based ISMs were performed to address the relatively contributing risk factors. The case study results show that the fire and explosion risk decreased by approximately a third after implementing ISMs, thus demonstrating that the modified processing scenario could be inherently safer than the original processing scenario. The newly developed inherent safety metric (i.e., DISM) can assist in temporal risk identification and assessment, and it is expected to function as a novel assessment tool for measuring and comparing the inherent safeness before and after implementing ISMs with simultaneous considerations on the time-varying risk factors.  相似文献   

9.
为克服传统危险与可操作性(HAZOP)定性分析方法在复杂操作、间歇作业等过程中使用的局限性,提出在传统HAZOP定性分析方法的基础上结合What-if(故障假设)方法,对人的不安全行为和操作规程不完备所导致的风险后果分析作出补充。详细说明其技术原理、工作流程等使用细节,系统阐述该方法与传统HAZOP定性分析方法的区别,并在某延迟焦化装置的除焦操作的风险分析中应用。经分析,识别出在“给水-泡焦”节点,有“操作规程错误”场景2项,“操作规程不具体”场景1项,不存在“操作人员未按操作规程执行”场景。研究结果表明:本文方法有效且具有较好效果,可以广泛应用于操作规程/作业指导书审查、作业过程隐患排查等方面,帮助企业开展操作层面的风险识别与管理,提升企业的生产安全水平。  相似文献   

10.
工艺危害分析强调运用系统的方法对危害进行辨识、分析,并采取必要的措施消除和减少危害。HAZOP分析能对工艺过程非常系统、全面的进行分析,但传统的HAZOP分析在量化风险时,对于偏差原因发生的可能性评价存在较大的主观性。本文对于没有统计资料的HAZOP分析偏差原因发生可能性,采用专家打分法,利用三角模糊数来表示其模糊发生概率。对于有统计资料的偏差原因,直接表示成三角模糊数。这种方法能够很好的表示HAZOP分析偏差发生概率。介绍了基于三角模糊数的HAZOP分析步骤,并在石油化工装置中进行了应用。这对HAZOP分析技术在石油化工装置中的推广具有重要意义。  相似文献   

11.
HAZOP分析方法是目前危险性分析领域最盛行的分析方法之一,广泛地应用于石油化工行业。但是其分析过程仅依靠专家积累的知识与经验,不仅评价的内容不严格,而且分析的可信程度有限,对实际工作的指导意义不高,不能适应工业现场的要求。鉴于HAZOP分析方法中的不足,提出了基于SDG模型的HAZOP分析方法,并利用该方法对钻井作业过程进行了危险性分析。基于SDG模型的HAZOP分析方法从复杂系统的内部逻辑入手,进行深层次的推理,不仅提高了分析效率,而且分析所得结果的完备性较好。  相似文献   

12.
管锋 《安全》2019,40(7):29-32,37
为了保证电镀废水处理工艺的安全性,首先采用危险与可操作性分析(HAZOP)方法定性辨识工艺中潜在的危险和危害,并提出安全对策措施;然后采用保护层分析(LOPA)方法定量计算现有保护措施是否能够将风险控制在可接受范围;如果风险较高,通过增加安全仪表等级(SIL)降低风险值。并通过实例分析证明HAZOP-LOPA分析方法能够有效地实现电镀废水处理工艺的风险评价。  相似文献   

13.
HAZOP、LOPA和SIL方法的应用分析   总被引:3,自引:0,他引:3  
通过概括介绍危险与可操作性分析(HAZOP)、保护层分析(LOPA)和安全完整性等级分析(SIL)三种方法的特点,总结三种分析方法之间的关系.LOPA分析是HAZOP分析的继续,可以解决HAZOP分析中残余风险不能定量化的不足,是对HAZOP分析结果的丰富和补充;SIL分析则在LOPA分析的基础上,进一步对需要增加的安全仪表系统(SIS)进行设计,并对LOPA分析结果进行验证,即HAZOP、LOPA分析是SIL分析的前期准备工作.因此,在详细介绍SIS的组成、安全生命周期阶段、SIL的选择确定方法以及SIL分析流程之前,也简要介绍了HAZOP、LOPA分析方法,梳理了两种方法的分析流程.最后通过引入示例来展示三种分析方法之间的关系.  相似文献   

14.
Risk analysis for production processes in the petrochemical industry is an important procedure for consequence prediction and investigation of accidents. The analyzer must grasp the correlations between the possible causes and consequences. From the potential cause and effect found in risk analysis reports, complete clarification should be obtained. Therefore, this study presents a method for assisting accident consequence prediction and investigation in the petrochemical industry based on risk analysis reports using natural language processing technology. First, a hazard and operability (HAZOP) historical data table is established by filling over 7200 HAZOP analysis data points. Both the causes and consequences in the table are classified into 20 categories each using the Latent Dirichlet Allocation (LDA) models. The LDA clustering results are assigned classification for the cause and consequence topics to the cause and consequences of the HAZOP analysis data. Based on part-of-speech (POS) tagging, all the words in each cause and consequence record are divided into subject and action words. Next, the word combinations of subject and action words with a higher occurrence are considered the key phrases for describing and representing the corresponding cause and consequence topic classifications. The Apriori algorithm is used to determine the frequent item sets, acquire the association rules, and calculate the association degree to obtain the sort order; it can highlight general trends in relational cause and consequence topics. According to the results, the most likely cause of the consequence and the most likely consequence that the cause may lead to are identified. Finally, a visual interface is developed to present the data for the consequence prediction and cause investigation of accidents. The results reveal that the quantity and quality of historic data are important factors that may influence the results. This method can contribute to predicting the accident evolution trend of an abnormal situation, taking preventive measures in advance, improving the accuracy of early warning, and supporting emergency response measures.  相似文献   

15.
The International Standards for Functional Safety (IEC 61508 and IEC 61511) are well recognised and have been adopted globally in many of the industrialised countries during the past 10 years or so. Conformance with these standards involves determination of the requirements for instrumented risk reduction measures, described in terms of a safety integrity level (SIL). During this period within the process sector, layer of protection analysis (LOPA) has become the most widely used approach for SIL determination. Experience has identified that there is a type of hazardous event scenario that occurs within the process sector that is not well recognised by practitioners, and is therefore not adequately handled by the standard LOPA approach. This is when the particular scenario places a high demand rate on the required safety instrumented function. This paper will describe how to recognise a high demand rate scenario. It will discuss what the standards have to say about high demand rates. It will then demonstrate how to assess this type of situation and provide a case study example to illustrate how to determine the necessary integrity level. It will conclude by explaining why it is important to treat high demand rate situations in this way and the resulting benefit of a lower but sufficient required integrity level.  相似文献   

16.
Recently, the use of analytical techniques to identify, assess and address risks within the pharmaceutical industry is increasing from the initial and operating phases until the final use of products aiming to eliminate or reduce the severity of deviations. The hazard and operability studies – HAZOP establish that accidents are the result of failure modes in process variables out of operational parameters. In this paper, the HAZOP methodology was used to assess risks in the system for recombinant protein production where a multidisciplinary group used the brainstorming strategy to identify the risk level and deviations in nodes defined by functionality in the system. Nineteen critical nodes were identified, deviations were established in based on knowledge, and experience by the group, thus precluded the need of deviation's records to estimate frequency and impacts of events. It was also shown that in the pharmaceutical industry the most-critical risks are those that have adverse impacts on production like partial and total losses and when noncompliance of regulations are involved. The HAZOP risk assessment tool can be easily followed by people who are interested in starting to use this technique to improve the security environment within the institution and when required by regulatory agencies.  相似文献   

17.
Hazard and operability (HAZOP) studies constitute an essential step in the risk analysis of any chemical process industry and involve systematic identification of every conceivable abnormal process deviation, its causes and abnormal consequences. These authors have recently proposed optHAZOP as an alternative procedure for conducting HAZOP studies in a shorter span of time than taken by conventional HAZOP procedure, with greater accuracy and effectiveness [Khan, F. I. and Abassi, S. A., optHAZOP. An effective and efficient technique for hazard identification and assessment Journal of Loss Prevention in the Process Industries, 1997, 10, 191–204]. optHAZOP consists of several steps, the most crucial one requires use of a knowledge-based software tool which would significantly reduce the requirement of expert man-hours and speed up the work of the study team. TOPHAZOP (Tool for OPTmizing HAZOP) has been developed to fulfil this need.

The TOPHAZOP knowledge-base consists of two main branches: process-specific and general. The TOPHAZOP framework allows these two branches to interact during the analysis to address the process-specific aspects of HAZOP analysis while maintaining the generality of the system. The system is open-ended and modular in structure to make easy implementation and/or expansion of knowledge. The important features of TOPHAZOP and its performance on an industrial case study are described.  相似文献   


18.
对传统的HAZOP分析中偏差原因发生可能性进行量化。对于有统计数据的,根据行业数据、公司经验及企业事故建立HAZOP风险分析统计数据库;对于没有统计数据的HAZOP分析偏差原因发生概率,通过专家主观评判,用模糊数理论将专家自然语言转换为模糊数,采用左右模糊排序法将模糊数转换为模糊失效概率值。研究了偏差后果严重程度的划分标准,并根据偏差原因概率和偏差后果严重程度确定风险等级,利用风险矩阵得出偏差风险的大小。从而把HAZOP分析方法从定性改进为半定量的分析方法。据此对石油化工装置进行了HAZOP风险分析。  相似文献   

19.
A safety analysis was performed to determine possible accidental events in the storage system used in the liquefied natural gas regasification plant using the integrated application of failure modes, effects and criticality analysis (FMECA) and hazard and operability analysis (HAZOP) methodologies. The goal of the FMECA technique is the estimation of component failure modes and their major effects, whereas HAZOP is a structured and systematic technique that provides an identification of the hazards and the operability problems using logical sequences of cause-deviation-consequence of process parameters. The proposed FMECA and HAZOP integrated analysis (FHIA) has been designed as a tool for the development of specific criteria for reliability and risk data organisation and to gain more recommendations than those typically provided by the application of a single methodology. This approach has been applied to the risk analysis of the LNG storage systems under construction in Porto Empedocle, Italy. The results showed that FHIA is a useful technique to better and more consistently identify the potential sources of human errors, causal factors in faults, multiple or common cause failures and correlation of cause-consequence of hazards during the various steps of the process.  相似文献   

20.
在役柴油加氢装置HAZOP分析技术   总被引:2,自引:1,他引:1  
柴油加氢装置属甲类火灾危险生产装置,为了保障其安全生产,实现事故早期预防,对其进行风险分析和安全评价势在必行.HAZOP分析方法是流程工业广泛使用的一种危险辨识和分析方法,具有较好的系统性和完备性.首先介绍了HAZOP分析方法的由来及应用情况,其次分析了在役装置HAZOP分析的难点,并提出了相应的建议,然后详述了在役装置HAZOP方法的分析流程.最后以中石油某石化公司在役柴油加氢装置为例进行了HAZOP分析,辨识出可能存在的安全隐患和潜在危险,对较高风险提出了必要的安全保护措施和合理的改进建议.结果表明,HAZOP分析是提高在役装置安全性的一种有效手段,其结果为装置安全管理提供了可靠的依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号