首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Purpose: This is a study of the influence of an unbelted rear occupant on the risk of severe injury to the front seat occupant ahead of them in frontal crashes. It provides an update to earlier studies.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to belted drivers and front passengers in frontal crashes by the presence of a belted or unbelted passenger seated directly behind them or without a rear passenger. Frontal crashes were identified with GAD1 = F without rollover (rollover ≤ 0). Front and rear outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4+F was determined using the number of occupants with known injury status MAIS 0+F. Standard errors were determined.

Results: The risk for severe injury was 0.803 ± 0.263% for the driver with an unbelted left rear occupant and 0.100 ± 0.039% with a belted left rear occupant. The driver's risk was thus 8.01 times greater with an unbelted rear occupant than with a belted occupant (P <.001). With an unbelted right rear occupant behind the front passenger, the risk for severe injury was 0.277 ± 0.091% for the front passenger. The corresponding risk was 0.165 ± 0.075% when the right rear occupant was belted. The front passenger's risk was 1.68 times greater with an unbelted rear occupant behind them than a belted occupant (P <.001). The driver's risk for MAIS 4+F was highest when their seat was deformed forward. The risk was 9.94 times greater with an unbelted rear occupant than with a belted rear occupant when the driver's seat deformed forward. It was 13.4 ± 12.2% with an unbelted occupant behind them and 1.35 ± 0.95% with a belted occupant behind them.

Conclusions: Consistent with prior literature, seat belt use by a rear occupant significantly lowered the risk for severe injury to belted occupants seated in front of them. The reduction was greater for drivers than for front passengers. It was 87.5% for the driver and 40.6% for the front passenger. These results emphasize the need for belt reminders in all seating positions.  相似文献   


2.
Purpose: This is a study that updates earlier research on the influence of a front passenger on the risk for severe driver injury in near-side and far-side impacts. It includes the effects of belt use by the driver and passenger, identifies body regions involved in driver injury, and identifies the sources for severe driver head injury.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for Maximum Abbreviated Injury Scale (MAIS) 4 + F driver injury in near-side and far-side impacts by front passenger belt use and as a sole occupant in the driver seat. Side impacts were identified with GAD1 = L or R without rollover (rollover ≤ 0). Front-outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4 + F was determined using the number of occupants with known injury status MAIS 0 + F. Standard errors were determined.

Results: Overall, belted drivers had greater risks for severe injury in near-side than far-side impacts. As a sole driver, the risk was 0.969 ± 0.212% for near-side and 0.313 ± 0.069% for far-side impacts (P < .005). The driver's risk was 0.933 ± 0.430% with an unbelted passenger and 0.596 ± 0.144% with a belted passenger in near-side impacts. The risk was 2.17 times greater with an unbelted passenger (NS). The driver's risk was 0.782 ± 0.431% with an unbelted passenger and 0.361% ± 0.114% with a belted passenger in far-side impacts. The risk was 1.57 times greater with an unbelted passenger (P < .10). Seat belt use was 66 to 95% effective in preventing MAIS 4 + F injury in the driver. For belted drivers, the head and thorax were the leading body regions for Abbreviated Injury Scale (AIS) 4+ injury. For near-side impacts, the leading sources for AIS 4+ head injury were the left B-pillar, roof, and other vehicle. For far-side impacts, the leading sources were the other occupant, right interior, and roof (8.5%).

Conclusions: Seat belt use by a passenger lowered the risk of severe driver injury in side impacts. The reduction was 54% in near-side impacts and 36% in far-side impacts. Belted drivers experienced mostly head and thoracic AIS 4+ injuries. Head injuries in the belted drivers were from contact with the side interior and the other occupant, even with a belted passenger.  相似文献   


3.

Introduction

Longitudinal barriers, such as guardrails, are designed to prevent a vehicle that leaves the roadway from impacting a more dangerous object while minimizing the risk of injury to the vehicle occupants. Current full-scale test procedures for these devices do not consider the effect of occupant restraints such as seatbelts and airbags. The purpose of this study was to determine the extent to which restraints are used or deployed in longitudinal barrier collisions and their subsequent effect on occupant injury.

Methods

Binary logistic regression models were generated to predict occupant injury risk using data from the National Automotive Sampling System / Crashworthiness Data System from 1997 through 2007.

Results

In tow-away longitudinal barrier crashes, airbag deployment rates were 70% for airbag-equipped vehicles. Compared with unbelted occupants without an airbag available, seat belt restrained occupants with an airbag available had a dramatically decreased risk of receiving a serious (MAIS 3+) injury (odds-ratio (OR) = 0.03; 95% CI: 0.004-0.24). A similar decrease was observed among those restrained by seat belts, but without an airbag available (OR = 0.03; 95% CI: 0.001- 0.79). No significant differences in risk of serious injuries were observed between unbelted occupants with an airbag available compared with unbelted occupants without an airbag available (OR = 0.53; 95% CI = 0.10-2.68).

Impact on Industry

This study refutes the perception in the roadside safety community that airbags rarely deploy in frontal barrier crashes, and suggests that current longitudinal barrier occupant risk criteria may over-estimate injury potential for restrained occupants involved in a longitudinal barrier crash.  相似文献   

4.
An investigation was conducted to estimate the effectiveness of air bags as a function of velocity. The study consisted of three parts: a theoretical idealization, an analysis of National Automotive Sampling System/Crashworthiness Data System (NASS/CDS), and a reanalysis of previously published Fatality Analysis Reporting System (FARS) data. The theoretical analysis looked at idealized risk curves as a function of velocity; assuming that the air bag offers a benefit for both belted and unbelted occupants. Analysis of the NASS/CDS data looked at the effectiveness of air bags as a function of velocity for Maximum Abbreviated Injury Scale (MAIS) 3+ injuries. The reanalysis of the previously published FARS data looked at the effectiveness of the air bag as a function of velocity for fatalities. The theoretical analysis indicates that the air bag effectiveness should be greatest at the low velocities. The field data analysis of both NASS/CDS and FARS were consistent with the theoretical analysis, indicating that air bags are most effective at the lower velocities, below 40 kph (25 mph), for both belted and unbelted occupants. Although it was not possible to estimate a different effect for belted and unbelted for fatalities using FARS, it was possible for MAIS 3+ using NASS/CDS. For unbelted occupants the effectiveness goes to zero or becomes negative above 40 kph (25 mph) for MAIS 3+, and for belted occupants the effectiveness stays positive but with significantly lower magnitude for speeds above 40 kph (25 mph).  相似文献   

5.
Objective: The purpose of this study was to use the detailed medical injury information in the Crash Injury Research and Engineering Network (CIREN) to evaluate patterns of rib fractures in real-world crash occupants in both belted and unbelted restraint conditions. Fracture patterns binned into rib regional levels were examined to determine normative trends associated with belt use and other possible contributing factors.

Methods: Front row adult occupants with Abbreviated Injury Scale (AIS) 3+ rib fractures, in frontal crashes with a deployed frontal airbag, were selected from the CIREN database. The circumferential location of each rib fracture (with respect to the sternum) was documented using a previously published method (Ritchie et al. 2006) and digital computed tomography scans. Fracture patterns for different crash and occupant parameters (restraint use, involved physical component, occupant kinematics, crash principal direction of force, and occupant age) were compared qualitatively and quantitatively.

Results: There were 158 belted and 44 unbelted occupants included in this study. For belted occupants, fractures were mainly located near the path of the shoulder belt, with the majority of fractures occurring on the inboard (with respect to the vehicle) side of the thorax. For unbelted occupants, fractures were approximately symmetric and distributed across both sides of the thorax. There were negligible differences in fracture patterns between occupants with frontal (0°) and near side (330° to 350° for drivers; 10° to 30° for passengers) crash principal directions of force but substantial differences between groups when occupant kinematics (and contacts within the vehicle) were considered. Age also affected fracture pattern, with fractures tending to occur more anteriorly in older occupants and more laterally in younger occupants (both belted and unbelted).

Conclusions: Results of this study confirmed with real-world data that rib fracture patterns in unbelted occupants were more distributed and symmetric across the thorax compared to belted occupants in crashes with a deployed frontal airbag. Other factors, such as occupant kinematics and occupant age, also produced differing patterns of fractures. Normative data on rib fracture patterns in real-world occupants can contribute to understanding injury mechanisms and the role of different causation factors, which can ultimately help prevent fractures and improve vehicle safety.  相似文献   

6.
《Safety Science》2006,44(2):87-109
The risk for injuries in rollover coach crashes are dependent on whether the occupants are belted or not. However, the influence of the different belt systems for reducing injuries has remained unclear. Since many injuries sustained are caused by impacts with the interior, passenger interactions or ejection through a window, the advantages by proper seat belt systems are evident. In this study, representing the most common serious crash scenario for serious injury, 128 injured in rollover cases were analysed with regard to the injury outcome, mechanisms and the possible injury reduction for occupants when using a safety belt. Furthermore, the different belt systems were compared to explain their contribution to increased safety. Based on medical reports and questioning of the passengers, the injuries sustained are recorded according to the AIS classification. The next step was the identification of the injury mechanisms, using the passenger statements as well as results from numerical occupant simulations. It is important to mention that this study was purely focused on detection of the injury mechanism to avoid the reported injuries. The possibility of additional injuries due to the wearing of a belt were not taken into account. However, the analysis of the 128 injured showed a considerable increase in safety for belted occupants through limiting interior contacts, minimising passenger interaction and reducing the possibility of ejection.  相似文献   

7.
8.
Objective: Vehicle change in velocity (delta-v) is a widely used crash severity metric used to estimate occupant injury risk. Despite its widespread use, delta-v has several limitations. Of most concern, delta-v is a vehicle-based metric which does not consider the crash pulse or the performance of occupant restraints, e.g. seatbelts and airbags. Such criticisms have prompted the search for alternative impact severity metrics based upon vehicle kinematics. The purpose of this study was to assess the ability of the occupant impact velocity (OIV), acceleration severity index (ASI), vehicle pulse index (VPI), and maximum delta-v (delta-v) to predict serious injury in real world crashes.

Methods: The study was based on the analysis of event data recorders (EDRs) downloaded from the National Automotive Sampling System / Crashworthiness Data System (NASS-CDS) 2000–2013 cases. All vehicles in the sample were GM passenger cars and light trucks involved in a frontal collision. Rollover crashes were excluded. Vehicles were restricted to single-event crashes that caused an airbag deployment. All EDR data were checked for a successful, completed recording of the event and that the crash pulse was complete. The maximum abbreviated injury scale (MAIS) was used to describe occupant injury outcome. Drivers were categorized into either non-seriously injured group (MAIS2?) or seriously injured group (MAIS3+), based on the severity of any injuries to the thorax, abdomen, and spine. ASI and OIV were calculated according to the Manual for Assessing Safety Hardware. VPI was calculated according to ISO/TR 12353-3, with vehicle-specific parameters determined from U.S. New Car Assessment Program crash tests. Using binary logistic regression, the cumulative probability of injury risk was determined for each metric and assessed for statistical significance, goodness-of-fit, and prediction accuracy.

Results: The dataset included 102,744 vehicles. A Wald chi-square test showed each vehicle-based crash severity metric estimate to be a significant predictor in the model (p < 0.05). For the belted drivers, both OIV and VPI were significantly better predictors of serious injury than delta-v (p < 0.05). For the unbelted drivers, there was no statistically significant difference between delta-v, OIV, VPI, and ASI.

Conclusions: The broad findings of this study suggest it is feasible to improve injury prediction if we consider adding restraint performance to classic measures, e.g. delta-v. Applications, such as advanced automatic crash notification, should consider the use of different metrics for belted versus unbelted occupants.  相似文献   

9.
Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant.

Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used.

Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome.

Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.  相似文献   

10.
INTRODUCTION: The goal of this study was to gather information on the preferred front seat position of vehicle occupants and to determine the impact of variation in seat position on safety during crashes. METHOD: The study evaluated the relationship between seat position and occupant size using the chi-square test and compared the risk of severe injury for small females and large males with regard to forward and rearward seat position using logistic regression. RESULTS: While smaller drivers sat closer to the steering wheel than larger drivers, front passengers of all sizes used similar seat positions. Additionally, the risk of injury was higher for small, unbelted females in rearward seat positions and large males (belted and unbelted) in forward seat positions. CONCLUSIONS: Occupants who adjust their seats to positions that are not consistent with required federal tests are at a greater risk for severe injury in a crash.  相似文献   

11.
OBJECTIVES: To examine the relationship between seatbelt non-use at the time of a crash, habitual non-use of seatbelts, and car crash injury; and to calculate the population attributable risk for car crash injury due to seatbelt non-use. METHODS: A population-based case control, interview study in Auckland, New Zealand, with 571 injured or killed drivers as cases and 588 population-based controls randomly selected from the driving population. RESULTS: Unbelted drivers had 10 times the risk of involvement in an injury crash compared to belted drivers after adjustment for multiple confounders. Habitual non-users were likely to be unbelted when involved in a crash. The population attributable risk for seatbelt non-use was 13%. CONCLUSIONS: Non-use of seatbelts is very strongly associated with increased injury crash involvement. Even where seatbelt use rates are higher than 90%, there remains a small group of habitual non-users who are at high risk; these drivers may benefit from targeted interventions.  相似文献   

12.
Current occupant protection assessment for side impact is focused on struck side occupants sitting alone. In a representative sample of tow-away side collisions from the UK, only one-third of front seat occupants in side collisions were alone, on the struck side of the car. The other two-thirds were either a non-struck side occupant alone or a situation where the adjacent seat was also occupied. In terms of restraint protection for non-struck side occupants, belts appeared to be less effective in perpendicular compared to oblique side crashes. Front seat occupancy had bearing on injury outcome. With both front seats occupied, there was a reduction in AIS 27+ injury to belted non-struck side occupants due to a reduction in chest and lower limb injuries. Struck side occupants sustained increased injury rates to the extremities when accompanied by a belted non-struck side occupant but no notable increases in moderate to serious injury to the head, chest, abdomen or pelvis.  相似文献   

13.
Introduction: Crash data suggest an association between driver seatbelt use and child passenger restraint. However, community-based restraint use is largely unknown. We examined the association between driver seatbelt use and child restraint using data from a state-wide observational study. Methods: Data from Iowa Child Passenger Restraint Survey, a representative state-wide survey of adult seat belt use and child passenger safety, were analyzed. A total of 44,996 child passengers age 0–17 years were observed from 2005 to 2019. Information about driver seatbelt use and child restraint was directly observed by surveyors and driver age was reported. Logistic regression was used to examine the association between driver seatbelt use and child restraint adjusting for vehicle type, community size, child seating position, child passenger age, and year. Results: Over the 15-year study period, 4,114 (9.1%) drivers were unbelted, 3,692 (8.2%) children were completely unrestrained, and another 1,601 (3.6%) children were improperly restrained (analyzed as unrestrained). About half of unbelted drivers had their child passengers unrestrained (51.8%), while nearly all belted drivers had their child passengers properly restrained (92.3%). Compared with belted drivers, unbelted drivers had an 11-fold increased odds of driving an unrestrained child passenger (OR = 11.19, 95%CI = 10.36, 12.09). The association between driver seatbelt use and child restraint was much stronger among teenage drivers. Unbelted teenage drivers were 33-fold more likely (OR = 33.34, 95%CI = 21.11, 52.64) to have an unrestrained child passenger. Conclusion: These data suggest that efforts to increase driver seatbelt use may also have the added benefit of increasing child restraint use. Practical applications: Enforcement of child passenger laws and existing education programs for new drivers could be leveraged to increase awareness of the benefits of seatbelt use for both drivers themselves and their occupants. Interventions aimed at rural parents could emphasize the importance of child safety restraints.  相似文献   

14.
Objective: Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data.

Methods: Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15–105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate.

Results: Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4–4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6–9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9–43.8% risk).

Conclusions: These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.  相似文献   

15.
Abstract

Objective: To meet increasing customer demand, many vehicle manufacturers are now offering a panoramic sunroof option in their vehicle lineup. Currently, there is no regulatory or consumer test aimed at assessing the potential for ejection mitigation of roof glazing, which leaves manufacturers to develop internal performance standards to guide designs. The goal of this study was to characterize the variety of occupant-to-roof impacts involving unbelted occupants in rollover crashes to determine the ranges of possible effective masses and impact velocities. This information can be used to define occupant retention requirements and performance criteria for roof glazing in occupant ejection protection.

Methods: This study combined computational (MADYMO and LS-Dyna) simulations of occupant kinematics in rollover crashes with laboratory rollover crash tests using the dynamic rollover test system (DRoTS) and linked them through controlled anthropomorphic test device (ATD)-to-roof (“drop”) impact tests. The DRoTS and the ATD drop tests were performed to explore impact scenarios and estimate dummy-to-roof impact impulses. Next, 13 sets of vehicle kinematics and deformation data were extracted from a combination of vehicle dynamics and finite element model simulations that reconstructed variations of rollover crash cases from the field data. Then occupant kinematics data were extracted from a full-factorial sensitivity study that used MADYMO simulations to investigate how changes in anthropometry and seating position would affect occupant–roof impacts across all 13 cases. Finite element (FE) simulations of ATD and Global Human Body Models Consortium (GHBMC) human body model (HBM) roof impacts were performed to investigate the most severe cases from the MADYMO simulations to generate a distribution of head-to-roof impact energies.

Results: From the multiparameter design of experiment and experimental study, kinematics and energy output were extracted and analyzed. Based on dummy-to-roof impact force and dummy-to-roof impact velocity, the most severe rollover scenarios were identified. In the DRoTS experiments followed by the drop tests, the range of identified impact velocities was between 2 and 5.8 m/s. However, computational simulations of the rollover crashes showed higher impact velocities and similar effective masses. The largest dummy-to-roof impact velocity was 11 m/s.

Conclusions: This study combined computational and experimental analyses to determine a range of possible unbelted occupant-to-roof impact energies. These results can be used to determine design parameters for an impactor for the assessment of the risk of roof glazing ejection for unbelted occupants in rollover crashes.  相似文献   

16.
Abstract

Objectives: Earlier research has shown that the rear row is safer for occupants in crashes than the front row, but there is evidence that improvements in front seat occupant protection in more recent vehicle model years have reduced the safety advantage of the rear seat versus the front seat. The study objective was to identify factors that contribute to serious and fatal injuries in belted rear seat occupants in frontal crashes in newer model year vehicles.

Methods: A case series review of belted rear seat occupants who were seriously injured or killed in frontal crashes was conducted. Occupants in frontal crashes were eligible for inclusion if they were 6 years old or older and belted in the rear of a 2000 or newer model year passenger vehicle within 10 model years of the crash year. Crashes were identified using the 2004–2015 National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and included all eligible occupants with at least one Abbreviated Injury Scale (AIS) 3 or greater injury. Using these same inclusion criteria but split into younger (6 to 12 years) and older (55+ years) cohorts, fatal crashes were identified in the 2014–2015 Fatality Analysis Reporting System (FARS) and then local police jurisdictions were contacted for complete crash records.

Results: Detailed case series review was completed for 117 rear seat occupants: 36 with Maximum Abbreviated Injury Scale (MAIS) 3+ injuries in NASS-CDS and 81 fatalities identified in FARS. More than half of the injured and killed rear occupants were more severely injured than front seat occupants in the same crash. Serious chest injury, primarily caused by seat belt loading, was present in 22 of the injured occupants and 17 of the 37 fatalities with documented injuries. Nine injured occupants and 18 fatalities sustained serious head injury, primarily from contact with the vehicle interior or severe intrusion. For fatal cases, 12 crashes were considered unsurvivable due to a complete loss of occupant space. For cases considered survivable, intrusion was not a large contributor to fatality.

Discussion: Rear seat occupants sustained serious and fatal injuries due to belt loading in crashes in which front seat occupants survived, suggesting a discrepancy in restraint performance between the front and rear rows. Restraint strategies that reduce loading to the chest should be considered, but there may be potential tradeoffs with increased head excursion, particularly in the absence of rear seat airbags. Any new restraint designs should consider the unique needs of the rear seat environment.  相似文献   

17.
OBJECTIVE: Motor vehicle collision (MVC)-related spinal injury is a severe and often permanently disabling injury. In addition, strain injuries have been reported as a common outcome of MVCs. Although advances in automobile crashworthiness have reduced both fatalities and severe injuries, the impact of varying occupant restraint systems (seatbelts and airbags) on thoracolumbar spine injuries is unknown. This study examined the relationship between the occurrence of mild to severe cervical and thoracolumbar spine injury and occupant restraint systems among front seat occupants involved in frontal MVCs. METHODS: A retrospective cohort study was conducted among subjects obtained from the 1995-2004 National Automotive Sampling System. Cases were identified based on having sustained a spine injury of >/=1 on the Abbreviated Injury Scale (AIS), 1990 Revision. Risk risks (RRs) and 95% confidence intervals (CIs) were computed comparing occupant restraint systems with unrestrained occupants. RESULTS: We found an overall incidence of AIS1 cervical (11.8%) and thoracolumbar (3.7%) spinal injury. Seatbelt only restraints were associated with increased cervical AIS1 injury (RR = 1.40, 95% CI 1.04-1.88). However, seatbelt only restraints showed the greatest risk reduction for AIS2 spinal injuries. Airbag only restraints reduced thoracolumbar AIS1 injuries (RR = 0.29, 95% CI 0.08-1.04). Seatbelt combined with airbag use was protective for cervical AIS3+ injury overall (RR = 0.29, 95% CI 0.14-0.58), cervical neurological injury (RR = 0.19, 95% CI 0.05-0.81), and thoracolumbar AIS3+ injury overall (RR = 0.20, 95% CI 0.05-0.70). CONCLUSIONS: The results of this study suggest that seatbelts alone or in combination with an airbag increased the incidence of AIS1 spinal injuries, but provide protection against more severe injury to all regions of the spine. Airbag deployment without seatbelt use did not show increased protection relative to unrestrained occupants.  相似文献   

18.
Objective: The Insurance Institute for Highway Safety (IIHS) introduced its side impact consumer information test program in 2003. Since that time, side airbags and structural improvements have been implemented across the fleet and the proportion of good ratings has increased to 93% of 2012–2014 model year vehicles. Research has shown that drivers of good-rated vehicles are 70% less likely to die in a left-side crash than drivers of poor-rated vehicles. Despite these improvements, side impact fatalities accounted for about one quarter of passenger vehicle occupant fatalities in 2012. This study is a detailed analysis of real-world cases with serious injury resulting from side crashes of vehicles with good ratings in the IIHS side impact test.

Methods: NASS-CDS and Crash Injury Research and Engineering Network (CIREN) were queried for occupants of good-rated vehicles who sustained an Abbreviated Injury Scale (AIS) ≥ 3 injury in a side-impact crash. The resulting 110 cases were categorized by impact configuration and other factors that contributed to injury. Patterns of impact configuration, restraint performance, and occupant injury were identified and discussed in the context of potential upgrades to the current IIHS side impact test.

Results: Three quarters of the injured occupants were involved in near-side impacts. For these occupants, the most common factors contributing to injury were crash severities greater than the IIHS test, inadequate side-airbag performance, and lack of side-airbag coverage for the injured body region. In the cases where an airbag was present but did not prevent the injury, occupants were often exposed to loading centered farther forward on the vehicle than in the IIHS test. Around 40% of the far-side occupants were injured from contact with the struck-side interior structure, and almost all of these cases were more severe than the IIHS test. The remaining far-side occupants were mostly elderly and sustained injury from the center console, instrument panel, or seat belt. In addition, many far-side occupants were likely out of position due to events preceding the side impact and/or being unbelted.

Conclusion: Individual changes to the IIHS side impact test have the potential to reduce the number of serious injuries in real-world crashes. These include impacting the vehicle farther forward (relevant to 28% of all cases studied), greater test severity (17%), the inclusion of far-side occupants (9%), and more restrictive injury criteria (9%). Combinations of these changes could be more effective.  相似文献   

19.
20.
OBJECTIVES: The majority of motor vehicle occupants who were killed or hospitalized in crashes in Kentucky in 2000-2001 occupied vehicles that were severely damaged in the crash. Even so, overall only a small percentage of all severely damaged vehicle occupants were killed or hospitalized. The purpose was to identify occupant, vehicle, crash, and roadway/environmental factors that were associated with increased risk of severe injury in crashes where the occupant's vehicle was severely damaged. METHODS: This study probabilistically linked Kentucky's statewide motor vehicle crash and inpatient hospital discharge data files for 2000 and 2001, and selected cases representing occupants of vehicles that were reported by police as having either "severe" or "very severe" damage. For occupants who were identified through data linkage as having been hospitalized, the Injury Severity Score (ISS) was calculated using ICDMAP-90 software, and the scores were stratified into the following categories: critical (>24), severe (15-24), moderate (9-14), and mild (<9). We then created an outcome variable, injury severity level, with five levels: killed; hospitalized with at least moderate injuries (ISS = critical, severe, or moderate); hospitalized with mild injuries (ISS = mild); injured according to the police report but not hospitalized; and no apparent injury according to the police report. We performed a stepwise, ordinal logistic regression of injury severity, using independent variables identified from the existing crash literature. RESULTS: Occupant risk factors for higher levels of injury severity selected by the regression were age (risk increased with age, other factors being equal), female gender, restraint non-use, ejection from the vehicle, and driver impairment (by alcohol and/or drugs). Crash risk factors included head-on collision, collision with a fixed object, vehicle rollover, and vehicle fire. Roadway/environmental factors were federal- or state-maintained roadway and posted speed limit 89 kph (55 mph) or greater. CONCLUSIONS: Many of the identified risk factors are explicitly or implicitly mentioned in the strategic plans of key organizations involved in highway safety and injury prevention in Kentucky. Our analysis provides additional evidence of their importance, and confirms that their mitigation will reduce injury severity in crashes involving severe vehicle damage. Additionally, older occupants and female occupants showed increased risks of serious injury, but to our knowledge these factors are not currently addressed in any state plans. An opportunity exists to clarify the nature of these risks through further studies, which might lead to the identification of countermeasures specific to these populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号