首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
● Efficient carbon methanation and nitrogen removal was achieved in AnMBR-PN/A system. ● AOB outcompeted NOB in PN section by limiting aeration and shortening SRT. ● The moderate residual organic matter of PN section triggered PD in anammox unit. ● AnAOB located at the bottom of UASB played an important role in nitrogen removal. An AnMBR-PN/A system was developed for mainstream sewage treatment. To verify the efficient methanation and subsequent chemolitrophic nitrogen removal, a long-term experiment and analysis of microbial activity were carried out. AnMBR performance was less affected by the change of hydraulic retention time (HRT), which could provide a stable influent for subsequent PN/A units. The COD removal efficiency of AnMBR was > 93% during the experiment, 85.5% of COD could be recovered in form of CH4. With the HRT of PN/A being shortened from 10 to 6 h, nitrogen removal efficiency (NRE) of PN/A increased from 60.5% to 80.4%, but decreased to 68.8% when the HRTPN/A further decreased to 4 h. Microbial analysis revealed that the highest specific ammonia oxidation activity (SAOA) and the ratio of SAOA to specific nitrate oxidation activity (SNOA) provide stable NO2-N/NH4+-N for anammox, and anammox bacteria (mainly identified as Candidatus Brocadia) enriched at the bottom of Anammox-UASB might play an important role in nitrogen removal. In addition, the decrease of COD in Anammox-UASB indicated partial denitrification occurred, which jointly promoted nitrogen removal with anammox.  相似文献   

2.
• Two IFAS and two MBBR full-scale systems (high COD:N ratio 8:1) were characterized. • High specific surface area carriers grew and retained slow-growing nitrifiers. • High TN removal is related to high SRT and low DO concentration in anoxic tanks. The relative locations of AOB, NOB, and DNB were examined for three different kinds of carriers in two types of hybrid biofilm process configurations: integrated fixed-film activated sludge (IFAS) and moving bed biofilm reactor (MBBR) processes. IFAS water resource recovery facilities (WRRFs) used AnodkalnessTM K1 carriers (KC) at Broomfield, Colorado, USA and polypropylene resin carriers (RC) at Fukuoka, Japan, while MBBR WRRFs used KC carriers at South Adams County, Colorado, USA and sponge carriers (SC) at Saga, Japan. Influent COD to N ratios ranged from 8:1 to 15:1. The COD and BOD removal efficiencies were high (96%–98%); NH4+-N and TN removal efficiencies were more varied at 72%–98% and 64%–77%, respectively. The extent of TN removal was higher at high SRT, high COD:N ratio and low DO concentration in the anoxic tank. In IFAS, RC with high specific surface area (SSA) maintained higher AOB population than KC. Sponge carriers with high SSA maintained higher overall bacteria population than KC in MBBR systems. However, the DNB were not more abundant in high SSA carriers. The diversity of AOB, NOB, and DNB was fairly similar in different carriers. Nitrosomonas sp. dominated over Nitrosospira sp. while denitrifying bacteria included Rhodobacter sp., Sulfuritalea sp., Rubrivivax sp., Paracoccus sp., and Pseudomonas sp. The results from this work suggest that high SRT, high COD:N ratio, low DO concentration in anoxic tanks, and carriers with greater surface area may be recommended for high COD, BOD and TN removal in WRRFs with IFAS and MBBR systems.  相似文献   

3.
• Short-term effect of the pyridine exposure on the SAD process was investigated. • The SAA at 150 mg/L pyridine reduced by 56.7% of the maximum value. • Inhibition kinetics models and inhibitory parameters were indicated. • Collaboration of AnAOB, HDB and PDB promoted the SAD. • Possible metabolic pathways of nitrogen and pyridine were proposed. In-depth knowledge on the role of pyridine as a bottleneck restricting the successful application of anammox-based process treating refractory coking wastewater remains unknown. In this study, the effect of short-term pyridine addition on a simultaneous anammox and denitrification (SAD) system fed with 25–150 mg/L pyridine was explored. The short-term operation showed that the highest total nitrogen (TN) removal efficiency was achieved at 25–50 mg/L of pyridine. As the pyridine addition increased, the contribution of the anammox pathway in nitrogen removal decreased from 99.3% to 79.1%, while the denitrification capability gradually improved. The specific anammox activity (SAA) at 150 mg/L pyridine decreased by 56.7% of the maximum SAA. The modified non-competitive inhibition model indicated that the 50% inhibitory concentration (IC50) of pyridine on anammox was 84.18 mg/L and the substrate inhibition constant (Ki) of pyridine for self-degradation was 135.19 mg/L according to the Haldane model. Moreover, high-throughput sequencing confirmed the abundance of Candidatus Kuenenia as the amount of anammox species decreased, while the amounts of denitrifiers and pyridine degraders significantly increased as the pyridine stress increased. Finally, the possible pathways of nitrogen bioconversion and pyridine biodegradation in the SAD system were elucidated through metagenomic analysis and gas chromatography/mass spectrometry results. The findings of this study enlarge the understanding of the removal mechanisms of complex nitrogenous pyridine-containing wastewater treated by the SAD process.  相似文献   

4.
• Sludge fermentation liquid addition resulted in a high NAR of 97.4%. • Extra NH4+-N from SFL was removed by anammox in anoxic phase. • Nitrogen removal efficiency of 92.51% was achieved in municipal wastewater. • The novel system could efficiently treat low COD/N municipal wastewater. Biological nitrogen removal of wastewater with low COD/N ratio could be enhanced by the addition of wasted sludge fermentation liquid (SFL), but the performance is usually limited by the introducing ammonium. In this study, the process of using SFL was successfully improved by involving anammox process. Real municipal wastewater with a low C/N ratio of 2.8–3.4 was treated in a sequencing batch reactor (SBR). The SBR was operated under anaerobic-aerobic-anoxic (AOA) mode and excess SFL was added into the anoxic phase. Stable short-cut nitrification was achieved after 46d and then anammox sludge was inoculated. In the stable period, effluent total inorganic nitrogen (TIN) was less than 4.3 mg/L with removal efficiency of 92.3%. Further analysis suggests that anammox bacteria, mainly affiliated with Candidatus_Kuenenia, successfully reduced the external ammonia from the SFL and contributed approximately 28%–43% to TIN removal. Overall, this study suggests anammox could be combined with SFL addition, resulting in a stable enhanced nitrogen biological removal.  相似文献   

5.
6.
Sludge digestion is critical to control the spread of ARGs from wastewater to soil. Fate of ARGs in three pretreatment-AD processes was investigated. UP was more efficient for ARGs removal than AP and THP in pretreatment-AD process. The total ARGs concentration showed significant correlation with 16S rRNA gene. The bacteria carrying ARGs could be mainly affiliated with Proteobacteria. Sewage sludge in the wastewater treatment plants contains considerable amount of antibiotic resistance genes (ARGs). A few studies have reported that anaerobic digestion (AD) could successfully remove some ARGs from sewage sludge, but information on the fate of ARGs in sludge pretreatment-AD process is still very limited. In this study, three sludge pretreatment methods, including alkaline, thermal hydrolysis and ultrasonic pretreatments, were compared to investigate the distribution and removal of ARGs in the sludge pretreatment-AD process. Results showed that the ARGs removal efficiency of AD itself was approximately 50.77%, and if these three sludge pretreatments were applied, the total ARGs removal efficiency of the whole pretreatment-AD process could be improved up to 52.50%–75.07%. The ultrasonic pretreatment was more efficient than alkaline and thermal hydrolysis pretreatments. Although thermal hydrolysis reduced ARGs obviously, the total ARGs rebounded considerably after inoculation and were only removed slightly in the subsequent AD process. Furthermore, it was found that the total ARGs concentration significantly correlated with the amount of 16S rRNA gene during the pretreatment and AD processes, and the bacteria carrying ARGs could be mainly affiliated with Proteobacteria.  相似文献   

7.
● Nitrifiers in WWTP were investigated at large spatial scale. ● AOB populations varied greatly but NOB populations were similar among cities. ● Drift dominated both AOB and NOB assembling processes. ● DO did not show a significant effect on NOB. ● NOB tended to cooperate with AOB and non-nitrifying microorganisms. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) play crucial roles in removing nitrogen from sewage in wastewater treatment plants (WWTPs) to protect water resources. However, the differences in ecological properties and putative interactions of AOB and NOB in WWTPs at a large spatial scale remain unclear. Hence, 132 activated sludge (AS) samples collected from 11 cities across China were studied by utilizing 16S rRNA gene sequencing technology. Results indicated that Nitrosomonas and Nitrosospira accounted for similar ratios of the AOB community and might play nearly equal roles in ammonia oxidation in AS. However, Nitrospira greatly outnumbered other NOB genera, with proportions varying from 94.7% to 99.9% of the NOB community in all WWTPs. Similar compositions and, hence, a low distance–decay turnover rate of NOB (0.035) across China were observed. This scenario might have partly resulted from the high proportions of homogenizing dispersal (~13%). Additionally, drift presented dominant roles in AOB and NOB assembling mechanisms (85.2% and 81.6% for AOB and NOB, respectively). The partial Mantel test illustrated that sludge retention time and temperature were the primary environmental factors affecting AOB and NOB communities. Network results showed that NOB played a leading role in maintaining module structures and node connections in AS. Moreover, most links between NOB and other microorganisms were positive, indicating that NOB were involved in complex symbioses with bacteria in AS.  相似文献   

8.
The inhibition ratio sharply increased with the increasing COD. The absorbance of UV-vis at 420 nm showed a linear correlation with the SMA. The molecular structure of EPS has changed when COD was 9585 mg/L. Illumina Miseq sequencing was employed to reveal the microbial composition. The synthesis of 2-butenal, which is a vital raw material for the production of sorbic acid as a food preservative, generates some toxic by-products, so it is urgent to seek better detoxification strategies for the treatment of 2-butenal manufacture wastewater. In this study, batch experiments were carried out to investigate the inhibition effect of wastewater on the methanogenic activity. To understand the wastewater toxicity to anaerobic granular sludge, variations of the specific methanogenic activity (SMA) and extracellular polymeric substance (EPS) constituents at various wastewater CODs were investigated. Ultraviolet-visible (UV-vis) spectra and Fourier transform infrared (FT-IR) spectra were employed to analyze the structure of the EPS. The results showed that the inhibitory ratio of 2-butenal manufacture wastewater was less than 8.4% on the anaerobic granular sludge when the CODs were less than 959 mg/L. However, the inhibitory ratio increased from 36.4% to 93.6% when CODs increased from 2396 mg/L to 9585 mg/L, with the SMA decreasing from 39.1 mL CH4/(gVSS·d) to 3.2 mL CH4/(gVSS·d). The diversity of the microbial community under various CODs was researched by Illumina 16S rRNA Miseq sequencing and the results demonstrated that ProteiniphilumPetrimonas and Syntrophobacter were the dominant bacteria genera in all sample. Regarding archaea, Methanobacterium was the most dominated archaea genera, followed by the Methanosaeta group in all samples. Moreover, the bacterial communities had changed obviously with increasing CODs, which indicated high CODs played a negative impact on the richness and diversity of bacterial community in the sludge samples.  相似文献   

9.
The existence of three-phase separator did not affect COD removal in the EAnCMBR. The existence of three-phase separator aggravated methane leakage of EAnCMBR. The existence of three-phase separator aggravated membrane fouling rate of EAnCMBR. Start-up of EAnCMBR equipped three-phase separator was slightly delayed. The three-phase separator is a critical component of high-rate anaerobic bioreactors due to its significant contribution in separation of biomass, wastewater, and biogas. However, its role in an anaerobic membrane bioreactor is still not clear. In this study, the distinction between an external anaerobic ceramic membrane bioreactor (EAnCMBR) unequipped (R1) and equipped (R2) with a three-phase separator was investigated in terms of treatment performance, membrane fouling, extracellular polymers of sludge, and microbial community structure. The results indicate that the COD removal efficiencies of R1 and R2 were 98.2%±0.4% and 98.1%±0.4%, respectively, but the start-up period of R2 was slightly delayed. Moreover, the membrane fouling rate of R2 (0.4 kPa/d) was higher than that of R1 (0.2 kPa/d). Interestingly, the methane leakage from R2 (0.1 L/d) was 20 times higher than that from R1 (0.005 L/d). The results demonstrate that the three-phase separator aggravated the membrane fouling rate and methane leakage in the EAnCMBR. Therefore, this study provides a novel perspective on the effects of a three-phase separator in an EAnCMBR.  相似文献   

10.
UV photodegradation of 27 typical VOCs was systematically investigated. Contribution of photolysis and photooxidation to VOCs removal was identified. Gaseous VOC could be partially converted to particles by 185/254 nm UV irradiation. The mineralization and conversion of 27 VOCs by UV irradiation were reported. Photodegradation by ultraviolet irradiation (UV) is increasingly applied in volatile organic compound (VOC) and odor gas treatments. In this study, 27 typical VOCs, including 11 hydrocarbons and 16 hydrocarbon derivatives, at 150–200 ppm in air and nitrogen gas were treated by a laboratory-scale UV reactor with 185/254 nm irradiation to systematically investigate their removal and conversion by UV irradiation. For the tested 27 VOCs, the VOC removal efficiencies in air were within the range of 13%–97% (with an average of 80%) at a retention time of 53 s, which showed a moderate positive correlation with the molecular weight of the VOCs (R = 0.53). The respective contributions of photolysis and photooxidation to VOC removal were identified for each VOC. According to the CO2 results, the mineralization rate of the tested VOCs was within the range of 9%–90%, with an average of 41% and were negatively correlated to the molecular weight (R = -0.63). Many of the tested VOCs exhibited high concentration particulate matters in the off-gases with a 3–283 mg/m3 PM10 range and a 2–40 mg/m3 PM2.5 range. The carbon balance of each VOC during UV irradiation was analyzed based on the VOC, CO2 and PM10 concentrations. Certain organic intermediates and 23–218 ppm ozone were also identified in the off-gases. Although the UV technique exhibited a high VOC removal efficiency, its drawbacks, specifically low mineralization, particulate matters production, and ozone emission, must be considered prior to its application in VOC gas treatments.  相似文献   

11.
• Simultaneous C & N removal in Methammox occurs at wide C:N ratio. • Biological Nitrogen Removal at wide C:N ratio of 1.5:1 to 14:1 is not reported. • Ammonia removal shifted from mixotrophy to heterotrophy at high C:N ratio. • Acetogenic population compensated for ammonia oxidizers at high C:N ratio. • Methanogens increase the plasticity of nitrogen removers at high C:N ratio. High C:N ratio in the wastewater limits biological nitrogen removal (BNR), especially in anammox based technologies. The present study attempts to improve the COD tolerance of the BNR process by associating methanogens with nitrogen removing bacterial (NRB) populations. The new microbial system coined as ‘Methammox’, was investigated for simultaneous removal of COD (C) and ammonia (N) at C:N ratio 1.5:1 to 14:1. The ammonia removal rate (11.5 mg N/g VSS/d) and the COD removal rates (70.6 mg O/g VSS/d) of Methammox was close to that of the NRB (11.1 mg N/g VSS/d) and the methanogenic populations (77.9 mg O/g VSS/d), respectively. The activities established that these two populations existed simultaneously and independently in ‘Methammox’. Further studies in biofilm reactor fetched a balanced COD and ammonia removal (55%–60%) at a low C:N ratio (≤2:1) and high C:N ratio (≥9:1). The population abundance of methanogens was reasonably constant, but the nitrogen removal shifted from mixotrophy to heterotrophy as the C:N ratio shifted from low (C:N≤2:1) to high (C:N≥9:1). The reduced autotrophic NRB (ammonia- and nitrite-oxidizing bacteria and Anammox) population at a high C:N ratio was compensated by the fermentative group that could carry out denitrification heterotrophically. The functional plasticity of the Methammox system to adjust to a broad C:N ratio opens new frontiers in biological nitrogen removal of high COD containing wastewaters.  相似文献   

12.
• CW-Fe allowed a high-performance of NO3-N removal at the COD/N ratio of 0. • Higher COD/N resulted in lower chem-denitrification and higher bio-denitrification. • The application of s-Fe0 contributed to TIN removal in wetland mesocosm. • s-Fe0 changed the main denitrifiers in wetland mesocosm. Sponge iron (s-Fe0) is a porous metal with the potential to be an electron donor for denitrification. This study aims to evaluate the feasibility of using s-Fe0 as the substrate of wetland mesocosms. Here, wetland mesocosms with the addition of s-Fe0 particles (CW-Fe) and a blank control group (CW-CK) were established. The NO3-N reduction property and water quality parameters (pH, DO, and ORP) were examined at three COD/N ratios (0, 5, and 10). Results showed that the NO3-N removal efficiencies were significantly increased by 6.6 to 58.9% in the presence of s-Fe0. NH4+-N was mainly produced by chemical denitrification, and approximately 50% of the NO3-N was reduced to NH4+-N, at the COD/ratio of 0. An increase of the influent COD/N ratio resulted in lower chemical denitrification and higher bio-denitrification. Although chemical denitrification mediated by s-Fe0 led to an accumulation of NH4+-N at COD/N ratios of 0 and 5, the TIN removal efficiencies increased by 4.5%‒12.4%. Moreover, the effluent pH, DO, and ORP values showed a significant negative correlation with total Fe and Fe (II) (P<0.01). High-throughput sequencing analysis indicated that Trichococcus (77.2%) was the most abundant microorganism in the CW-Fe mesocosm, while Thauera, Zoogloea, and Herbaspirillum were the primary denitrifying bacteria. The denitrifiers, Simplicispira, Dechloromonas, and Denitratisoma, were the dominant bacteria for CW-CK. This study provides a valuable method and an improved understanding of NO3-N reduction characteristics of s-Fe0 in a wetland mesocosm.  相似文献   

13.
A two-stage BTF system was established treating odorous off-gas mixture from a WWTP. The two-stage BTF system showed resistance for the lifting load of H2S and VOSC. Miseq Illumina sequencing showed separated functional microbial community in BTFs. Avoiding H2S inhibition and enhancement of VOSC degradation was achieved. Key control point was discussed to help industrial application of the system. Simultaneous removal of hydrogen sulfide (H2S) and volatile organic sulfur compounds (VOSCs) in off-gas mixture from a wastewater treatment plant (WWTP) is difficult due to the occasional inhibitory effects of H2S on VOSC degradation. In this study, a two-stage bio-trickling filter (BTF) system was developed to treat off-gas mixture from a real WWTP facility. At an empty bed retention time of 40 s, removal efficiencies of H2S, methanethiol, dimethyl sulfide, and dimethyl disulfide were 90.1, 88.4, 85.8, and 61.8%, respectively. Furthermore, the effect of lifting load shock on system performance was investigated and results indicated that removal of both H2S and VOSCs was slightly affected. Illumina Miseq sequencing revealed that the microbial community of first-stage BTF contained high abundance of H2S-affinity genera including Acidithiobacillus (51.43%), Metallibacterium (25.35%), and Thionomas (8.08%). Analysis of mechanism demonstrated that first stage of BTF removed 86.1% of H2S, mitigating the suppression on VOSC degradation in second stage of BTF. Overall, the two-stage BTF system, an innovative bioprocess, can simultaneously remove H2S and VOSC.  相似文献   

14.
The highest removal efficiencies of COD and TN were achieved under 10 mg/L of Al3+. The highest TP removal efficiency occurred under 30 mg/L of Al3+. EPS, PS and PN concentrations increased with the addition of Al3+. Sludge properties significantly changed with the addition of Al3+. Aluminum ions produced by aluminum mining, electrolytic industry and aluminum-based coagulants can enter wastewater treatment plants and interact with activated sludge. They can subsequently contribute to the removal of suspended solids and affect activated sludge flocculation, as well as nitrogen and phosphorus removal. In this study, the effects of Al3+ on pollutant removal, sludge flocculation and the composition and structure of extracellular polymeric substances (EPS) were investigated under anaerobic, anoxic and oxic conditions. Results demonstrated that the highest chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies were detected for an Al3+ concentration of 10 mg/L. In addition, the maximal dehydrogenase activity and sludge flocculation were also observed at this level of Al3+. The highest removal efficiency of total phosphorus (TP) was achieved at an Al3+ concentration of 30 mg/L. The flocculability of sludge in the anoxic zone was consistently higher than that in the anaerobic and oxic zones. The addition of Al3+ promoted the secretion of EPS. Tryptophan-like fluorescence peaks were detected in each EPS layer in the absence of Al3+. At the Al3+ concentration of 10 mg/L, fulvic acid and tryptophan fluorescence peaks began to appear, while the majority of protein species and the highest microbial activity were also detected. Low Al3+ concentrations (<10 mg/L) could promote the removal efficiencies of COD and TN, yet excessive Al3+ levels (>10 mg/L) weakened microbial activity. Higher Al3+ concentrations (>30 mg/L) also inhibited the release of phosphorus in the anaerobic zone by reacting with PO43-.  相似文献   

15.
SBBR-CW system was proposed to effectively treat wastewater containing TCBPA. CW unit contributed more than SBBR to the removal of TCBPA. TCBPA changed the composition and structure of bacterial community in the system. GAOs massively grew in SBBR, but did not deteriorate TP removal efficiency. Tetrachlorobisphenol A (TCBPA) released into the sewage may cause environmental pollution and health risk to human beings. The objective of this study was to investigate the removal of TCBPA and bacterial community structures in a laboratory-scale hybrid sequencing biofilm batch reactor (SBBR)-constructed wetland (CW) system. The results showed that the removal efficiency of chemical oxidation demand (COD), ammonia, total nitrogen and total phosphorus in the SBBR-CW system was 96.7%, 97.3%, 94.4%, and 88.6%, respectively. At the stable operation stage, the system obtained a 71.7%±1.8% of TCBPA removal efficiency with the influent concentration at 200 mg/L. Illumina MiSeq sequencing of 16S rRNA gene revealed that the presence of TCBPA not only reduced the bacterial diversity in the SBBR-CW system, but also altered the composition and structure of bacterial community. After the addition of TCBPA, Proteobacteria increased from 31.3% to 38.7%, while Acidobacteria and Parcubacteria decreased greatly in the SBBR. In contrast, Acidobacteria replaced Proteobacteria as the dominant phylum in the upper soils of CW. The results indicated that TCBPA stimulated the growth of GAOs in the SBBR without deteriorating the phosphorus removal due to the presence of sufficient carbon sources. The ammonia oxidizing bacteria, Nitrosomonas, and denitrification bacteria, Hyphomicrobium and Pseudomonas, were inhibited by TCBPA, resulting in a decreasing the removal efficiency of TN and ammonia.  相似文献   

16.
Novel carriers with favorable electrophilicity and hydrophilicity were prepared. Novel carriers had the capability of nitrification-enhancing. NH4+-N removal efficiency of IFFAS process rose up to 20% with novel carriers. Nitrosomonadales and Nitrospirales were identified as the functional nitrifiers. The population of Nitrospirales increased by 4.51%. The integrated floating fixed-film activated sludge (IFFAS) process is an ideal preference for nitrification attributing to the longer sludge age for nitrifiers. However, as the core of this process, conventional carriers made of polymer materials usually exhibit negative charge and hydrophobicity on the surface, which is unbeneficial to nitrifying biofilm formation. In this study, novel clinoptilolite composite carriers with favorable hydrophilicity, positive charge and nitrification-enhancing capability were made and implemented in IFFAS system. In comparison with conventional carriers, the novel clinoptilolite composite carriers displayed positive charges on the surface (11.7±1.1 mV, pH 7.0) with increased hydrophilicity (surface contact angle dropped to 76.7°). The novel-carriers-based reactors achieved significantly better NH4+-N removal efficiency at different influent concentrations, dissolved oxygen (DO) levels and shock loads (NH4+-N removal efficiency rose up to 20% comparing with the control reactors filled with polyethylene (PE) carriers or activated sludge). High-throughput sequencing (HTS) results indicated the novel clinoptilolite composite carriers provided favorable niche for more types of bacteria, especially for Nitrosomonadales and Nitrospirales (the functional nitrifiers in the system). The population of Nitrospirales increased by 4.51% by using novel clinoptilolite composite carriers comparing with using PE carriers, which ensured enhanced nitrification process. This study was expected to provide a practical option for enhancing wastewater nitrification performance with the novel clinoptilolite composite carrier.  相似文献   

17.
The concentrations of four types of antibiotics in the Yitong River were detected. The concentration of total coliforms in summer was higher than that in spring. There was a seasonal difference in antibiotic resistance of E. coli. The E. coli in the Yitong River was found to have multiple antibiotic resistance. The Yitong River is one of the largest secondary tributaries of the Songhua River. The area where the Yitong River flows is densely populated and contains the livestock and poultry breeding areas of north-east China. These areas introduce a high risk of antibiotic contamination. In this study, the concentrations of four types of typical antibiotics including quinolones, tetracyclines, sulfonamides, and trimethoprim were determined by solid phase extraction-high performance liquid chromatography. The antibiotic resistance of Escherichia coli caused by antibiotic pollution was investigated. The concentration of total coliforms in the Yitong River was detected by the plate counting method. The antibiotic resistance of E. coli to quinolones, tetracyclines, sulfonamides, and trimethoprim was analyzed by the Kirby-Bauer method. The results showed that the concentration of total coliforms in the summer was higher than that in the spring. There was a seasonal difference in the resistance rate of E. coli to antibiotics except trimethoprim. The antibiotic resistance to fluoroquinolones was relatively low. The resistance rate to tetracyclines was higher during the summer. Moreover, resistance to several antibiotics was observed in all sections. This study provides basic data for research on pollution characteristics and prevention of antibiotic exposure in rivers.  相似文献   

18.
Poor biodegradability and insufficient carbon source are discovered from influent. Influent indices presented positively normal distribution or skewed distribution. Average energy consumption of WWTPs in Taihu Basin was as high as 0.458 kWh/m3. Energy consumption increases with the increase in influent volume and COD reduction. The total energy consumption decreases with the NH3-N reduction. The water quality and energy consumption of wastewater treatment plants (WWTPs) in Taihu Basin were evaluated on the basis of the operation data from 204 municipal WWTPs in the basin by using various statistical methods. The influent ammonia nitrogen (NH3-N) and total nitrogen (TN) of WWTPs in Taihu Basin showed normal distribution, whereas chemical oxygen demand (COD), biochemical oxygen demand (BOD5), suspended solid (SS), and total phosphorus (TP) showed positively skewed distribution. The influent BOD5/COD was 0.4%–0.6%, only 39.2% SS/BOD5 exceeded the standard by 36.3%, the average BOD5/TN was 3.82, and the probability of influent BOD5/TP>20 was 82.8%. The average energy consumption of WWTPs in Taihu Basin in 2017 was 0.458 kWh/m3. The specific energy consumption of WWTPs with a daily treatment capacity of more than 5 × 104 m3 in Taihu Basin was stable at 0.33 kWh/m3. A power function relationship was observed between the reduction in COD and NH3-N and the specific energy consumption of pollutant reduction, and the higher the pollutant reduction is, the lower the specific energy consumption of pollutant reduction presents. In addition, a linear relationship existed between the energy consumption of WWTPs and the specific energy consumption of influent volume and pollutant reduction. Therefore, upgrading and operation with less energy consumption of WWTPs is imperative and the suggestions for Taihu WWTPs based on stringent discharge standard are proposed in detail.  相似文献   

19.
Anaerobically digested swine wastewater was treated by a novel constructed wetland. Tidal operation was better for total nitrogen removal than intermittent flow. Mechanism of nitrogen removal by biozeolite-based constructed wetland was discussed. Simultaneous nitrification and denitrification were determined in zeolite layer. Nitrogen removal of wastewater containing high-strength ammonium by the constructed wetlands (CWs) has been paid much attention. In this study, the ability of a partially saturated CW to treat anaerobically-digested decentralized swine wastewater under varying operating parameters from summer to winter was investigated. The partially saturated CW achieved better NH4+-N and TN removal by tidal flow than intermittent flow. With surface loading rates of 0.108, 0.027, and 0.029 kg/(m2·d) for COD, NH4+-N, and TN, the partially saturated CW by tidal operation achieved corresponding removal efficiencies of 85.94%, 61.20%, and 57.41%, respectively, even at 10°C. When the rapid-adsorption of NH4+-N and the bioregeneration of zeolites reached dynamically stable, the simultaneous nitrification and denitrification in the aerobic zeolite layer was observed and accounted for 58.82% of the total denitrification of CW. The results of Illumina high-throughput sequencing also indicated that nitrifiers (Nitrospira and Rhizomicrobium) and denitrifiers (Rhodanobacter and Thauera) simultaneously existed in the zeolite layer. The dominant existence of versatile organic degraders and nitrifiers/denitrifiers in the zeolite layer was related to the removal of most COD and nitrogen in this zone. The contribution of the possible nitrogen removal pathways in the CW was as follows: nitrification-denitrification (86.55%)>substrate adsorption (11.70%)>plant uptake (1.15%)>microbial assimilation (0.60%).  相似文献   

20.
H. venusta TJPU05 showed excellent HN-AD ability at high salinity. • Successful expression of AMO, HAO, NAR and NIR confirmed the HN-AD ability of TJPU05. H. venusta TJPU05 could tolerate high salt and high nitrogen environment. H. venusta TJPU05 is a promising candidate for the bio-treatment of AW. A novel salt-tolerant heterotrophic nitrification and aerobic denitrification (HN-AD) bacterium was isolated and identified as Halomonas venusta TJPU05 (H. venusta TJPU05). The nitrogen removal performance of H. venusta TJPU05 in simulated water (SW) with sole or mixed nitrogen sources and in actual wastewater (AW) with high concentration of salt and nitrogen was investigated. The results showed that 86.12% of NH4+-N, 95.68% of NO3-N, 100% of NO2-N and 84.57% of total nitrogen (TN) could be removed from SW with sole nitrogen sources within 24 h at the utmost. H. venusta TJPU05 could maximally remove 84.06% of NH4+-N, 92.33% of NO3-N, 92.9% of NO2-N and 77.73% of TN from SW with mixed nitrogen source when the salinity was above 8%. The application of H. venusta TJPU05 in treating AW with high salt and high ammonia nitrogen led to removal efficiencies of 50.96%, 47.28% and 43.19% for NH4+-N, NO3-N and TN respectively without any optimization. Furthermore, the activities of nitrogen removal–related enzymes of the strain were also investigated. The successful detection of high level activities of ammonia oxygenase (AMO), hydroxylamine oxidase (HAO), nitrate reductase (NAR) and nitrite reductase (NIR) enzymes under high salinity condition further proved the HN-AD and salt-tolerance capacity of H. venusta TJPU05. These results demonstrated that the H. venusta TJPU05 has great potential in treating high-salinity nitrogenous wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号