首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from four electric arc furnaces (EAFs) and eight secondary aluminum smelters (secondary ALSs) in Taiwan. The mean PCDD/F International-Toxicity Equivalents (I-TEQ) concentrations in the stack gases of these EAFs and secondary ALSs are 0.28 ng I-TEQ/Nm3 (relative standard deviation [RSD]= 100%) and 3.3 ng I-TEQ/Nm3 (RSD = 260%), respectively. The high RSDs, especially for those obtained from secondary ALSs, could be caused by the intrinsic differences in their involved feeding materials, furnace operating conditions, and air pollution control devices. The mean I-TEQ emission factor of PCDD/Fs for EAFs (1.8 microg I-TEQ/tonne-feedstock) is lower than that for secondary ALSs (37 microg I-TEQ/tonne-feedstock). This result might be because the involved furnace temperatures for secondary ALSs (650-750 degrees C) are lower than those for EAFs (1600-1700 degrees C), resulting in the deterioration of the combustion condition, leading to the formation of PCDD/Fs during the industrial process. This study found that the total PCDD/F emissions from EAFs (20 g I-TEQ/yr) and secondary ALSs (18 g I-TEQ/yr) are approximately 27, 53, and approximately 24, 49 times higher than those from municipal solid waste incinerators (MSWIs; 0.74 g I-TEQ/yr) and medical waste incinerators (MWIs; 0.37 g I-TEQ/yr), respectively; while those are 44 and 40% of total PCDD/F emission from sinter plants (45 g I-TEQ/ yr), respectively. Considering a more stringent emission limit has been applied to waste incinerators (0.1 ng I-TEQ/Nm3) in Taiwan lately, the results suggest that the control of the emissions from metallurgical processes has become the most important issue for reducing the total PCDD/F emission from industrial sectors to the ambient environment.  相似文献   

2.
Fabrellas B  Sanz P  Abad E  Rivera J 《Chemosphere》2001,43(4-7):683-688
The main objectives of the Spanish dioxin inventory and the incidence of municipal waste incinerators in the PCDD/Fs releases in the period from January 1997-November 1999 are presented. Preliminary data about the stack emission levels, fly ashes and slags as solid residues and the PCDD/Fs input in the USW are also presented to elaborate an initial balance for the incineration sector. A great decrease, from 20 to 1.2 g I-TEQ/y, from incineration gas emissions has been observed since 1996. The preliminary balance in the MWI sector suggests an overall PCDD/Fs destruction. The calculated emission factor, 1.06 microg I-TEQ/Mg, indicates a high quality of the air pollution control systems. The assumption of PCDD/Fs in the USW permits an initial evaluation of other waste management systems.  相似文献   

3.
Measurements of the concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were made in ambient air, ash, and soil impacted by the open burning of wax apple and rice straw residues. Measurements showed that the mean PCDD/F concentration (0.458 pg I-TEQ/Nm3; international toxicity equivalence) in air at two wax apple orchards during open burning increased markedly, -8.1 times higher than that (0.057 pg I-TEQ/Nm3); before open burning. In addition, the mean PCDD/F concentration (0.409 pg I-TEQ/Nm3) in ambient air at a rice straw field was 4.6 times higher than that (0.089 pg I-TEQ/Nm3) before open burning. After burning the residues of wax apple stubble and rice straw, the contents of PCDD/F in ashes were 1.393 and 1.568 ng I-TEQ/kg-ash, respectively, and the contents of PCDD/F in soil were 2.258 and 2.890 ng I-TEQ/kg-soil, respectively. Therefore, the turnover of soil with the ash after open burning over years will result in the accumulation of PCDD/Fs in farm soils.  相似文献   

4.
Municipal solid waste incinerators (MSWIs) have long been the major contributors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to ambient air in Taiwan. After stringent MSWI emission standards were introduced in 2001, the long-term continuous monitoring of flue gas and ambient air quality became necessary to ensure the effectiveness of the related control strategies. Three MSWIs and the surrounding ambient air were investigated in the current study for PCDD/F characteristics during 2006 to 2011. The average concentrations in the flue gas ranged from 0.008?~?0.0488 ng I-TEQ/Nm3, which is much less than the emission standard in Taiwan (0.1 ng I-TEQ/Nm3) (I-TEQ is the abbreviation of International Toxic Equivalent). This led to extremely low levels in the ambient air, 0.0255 pg I-TEQ/Nm3, much less than the levels seen in most urban areas around the world. Additionally, the results obtained using the Industrial Source Complex Short-Term Dispersion Model (ISCST3) indicate that the PCDD/F contributions from the three MSWIs to the ambient air were only in the range from 0.164?~?0.723 %. Principal component analysis (PCA) showed that the PCDD/Fs in the air samples had very similar characteristics to those from mobile sources. The results thus show that stringent regulations have been an effective control strategy, especially for urban areas, such as Taipei City.  相似文献   

5.
Lee SJ  Choi SD  Jin GZ  Oh JE  Chang YS  Shin SK 《Chemosphere》2007,68(5):856-863
Municipal solid waste incinerators (MSWIs) have been shown to be important sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The emission of PCDD/Fs by MSWIs is a controversial subject in human health risk assessment. In this study the effect of a MSWI on a residential area was assessed before and after the installation of an additional treatment system for flue gas. This additional treatment system resulted in a dramatic decrease in PCDD/F concentrations in stack flue gas samples by 99.98%, while the concentrations in air decreased by approximately 50% (36,500 and 0.75 pg I-TEQ m(-3) for air in 1999; 3.5 and 0.38 pg I-TEQ m(-3) in 2002; 1.6 and 0.076 pg I-TEQ m(-3) in 2005 for stack gas and air, respectively). Considering the congener distributions of PCDD/Fs between stack flue gas and air samples, the study area seemed to have been contaminated by other urban sources as well as the MSWI. ISC3 model results support the conclusion that this incinerator became only a minor contributor to the study area after installation of the supplementary systems. This resulted from both proper MSWI operation using modern technology and additional sources of contaminants in this region. Finally, PCDD/F uptake by humans through inhalation of contaminated air was estimated. Assuming that inhalation exposure contributes 10% of total exposure, total exposure was lower than WHO guidelines. These results confirm that proper operation and maintenance of the incinerator led to a reduction in emissions and potential health impacts of PCDD/Fs.  相似文献   

6.
Anderson DR  Fisher R 《Chemosphere》2002,46(3):371-381
Several countries have compiled national inventories of dioxin (polychlorinated dibenzo-p-dioxin [PCDD] and polychlorinated dibenzofuran [PCDF]) releases that detail annual mass emission estimates for regulated sources. High temperature processes, such as commercial waste incineration and iron ore sintering used in the production of iron and steel, have been identified as point sources of dioxins. Other important releases of dioxins are from various diffuse sources such as bonfire burning and domestic heating. The PCDD/F inventory for emissions to air in the UK has decreased significantly from 1995 to 1998 because of reduced emissions from waste incinerators which now generally operate at waste gas stack emissions of 1 ng I-TEQ/Nm3 or below. The iron ore sintering process is the only noteworthy source of PCDD/Fs at integrated iron and steelworks operated by Corus (formerly British Steel plc) in the UK. The mean waste gas stack PCDD/F concentration for this process is 1,2 ng I-TEQ/Nm3 based on 94 measurements and it has been estimated that this results in an annual mass release of approximately 38 g I-TEQ per annum. Diffuse sources now form a major contribution to the UK inventory as PCDD/Fs from regulated sources have decreased, for example, the annual celebration of Bonfire Night on 5th November in the UK causes an estimated release of 30 g I-TEQ, similar to that emitted by five sinter plants in the UK.  相似文献   

7.
A study was conducted to observe the changes in polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) levels and congener profiles in the flue gas of a hazardous waste incinerator during two start-up periods. Flue gas samplings were performed simultaneously through Air Pollution Control Devices (APCDs) (including boiler outlet, electrostatic precipitator (ESP) outlet, wet scrubbers (WS) outlet, and activated carbon (AC) filter outlet) in different combustion temperatures during a planned cold (long) start-up and an unplanned warm (short) start-up. The results showed that PCDD/F concentrations could be elevated during the start-up periods up to levels 3–4 times higher than those observed in the normal operation. Especially lower combustion temperatures in the short start-ups may cause high PCDD/F concentrations in the raw flue gas. Assessment of combustion temperatures and Furans/Dioxins values indicated that surface-catalyzed de novo synthesis was the dominant pathway in the formation of PCDD/Fs in the combustion units. PCDD/F removal efficiencies of Air Pollution Control Devices suggested that formation by de novo synthesis existed in ESP also when in operation, leading to increase of gaseous phase PCDD/Fs in ESP. Particle-bound PCDD/Fs were removed mainly by ESP and WS, while gaseous phase PCDD/Fs were removed by WS, and more efficiently by AC filter.

Implications: This paper evaluates PCDD/F emissions and removal performances of APCDs (ESP, wet scrubbers, and activated carbon) during two start-up periods in an incinerator. The main implications are the following: (1) start-up periods increase PCDD/F emissions up to 2–3 times in the incinerator; (2) low combustion temperatures in start-ups cause high PCDD/F emissions in raw gas; (3) formation of PCDD/Fs by de novo synthesis occurs in ESP; (4) AC is efficient in removing gaseous PCDD/Fs, but may increase particle-bound ones; and (5) scrubbers remove both gaseous and particle-bound PCDD/Fs efficiently.  相似文献   

8.
In April 1996 and 1998, the concentrations of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were determined in 40 herbage samples collected in the neighborhood of a hazardous waste incinerator (HWI) under construction in Constanti (Catalonia, Spain). In April 2000, 20 months after the HWI began operating, herbage samples were again collected at the same sampling points in which samples had been taken in the previous surveys. PCDD/F concentrations ranged between 0.13 and 0.65 ng I-TEQ/kg (dry matter), with a median and mean values of 0.29 and 0.32 ng I-TEQ/kg (dry matter), respectively. The results were compared with those obtained in the 1996 (median, 0.53 ng I-TEQ/kg; mean, 0.61 ng I-TEQ/kg) and the 1998 (median, 0.23 ng I-TEQ/kg; mean, 0.31 ng I-TEQ/kg) surveys. While in the period 1996-1998 a significant decrease (49%, P < 0.001) in the mean PCDD/F levels was noted, in the period 1998-2000 an increase of 3% (P > 0.05) was found in the concentrations of PCDD/Fs. The analysis of the results suggests two potential hypotheses: either the emissions of PCDD/Fs from the HWI are not negligible, or the current PCDD/F emissions from other sources near the HWI remained at similar levels to those reached in 1998. Anyhow, an exhaustive evaluation of the present data shows an absence of notable PCDD/F contamination by the HWI in the area under its direct influence. It seems also probable that the decline in the atmospheric levels of PCDD/Fs due other emission sources of PCDD/Fs in this area is currently stopped.  相似文献   

9.
The production of cement in China is accompanied by various emissions, such as fine particulate matter, heavy metals, nitrogen oxides, sulfur oxides, carbon dioxide…. Moreover, cement kiln presents a potential health risk to its surroundings, linking to emissions of persistent organic pollutants (POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), in brief dioxins. Flue gas samples were collected from five typical cement kilns during twelve runs and were used to evaluate the levels and distribution of PCDD/Fs in the emissions from cement kilns. The PCDD/Fs concentrations (136 congeners) and I-TEQ values ranged from 2.3 to >40 ng/m3 and 9.3?~?90.8?×?10?3 ng I-TEQ/m3, respectively, which were lower than the emission standard in China (0.1 ng I-TEQ/m3). In weight units, the dominant congeners were OCDD, 1,2,3,4,6,7,8-HpCDF, and OCDF; 2,3,4,7,8-PeCDF is the largest contributor (36–66 %) to the total I-TEQ value of twelve runs. HxCDF and TCDF were the first two most abundant homologue groups (12–85 and 4–52 %), and the homologue concentration decreased with rising chlorine number for PCDDs. In addition, there was no marked difference in homologue profiles when solid wastes (refuse-derived fuel and municipal solid waste) and hazardous wastes (DDT and POPs) were combusted as supplemental fuels. The use of various supplemental fuels had no obvious effect on the fingerprint of PCDD/F homologues. Moreover, there was no significant difference in levels of PCDD/Fs emission due to the diversity of production capacity, which were consistent with reported previously. Air pollution control device had effect on the homologue profiles, and cement system with electrostatic precipitators (ESP) had more fractions of octachloro congeners to the total.  相似文献   

10.
Oh JE  Choi SD  Lee SJ  Chang YS 《Chemosphere》2006,64(4):579-587
To examine the influence of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) emissions from a municipal solid waste incinerator (MSWI) on the environment, we measured the levels of PCDD/Fs in ambient air and soil samples collected near a MSWI in Bucheon, Korea. The PCDD/Fs concentrations in the ambient air samples ranged from 0.22 to 1.16 pg I-TEQm(-3) (13.39-75.16 pg m(-3)), with an average of 0.66 pg I-TEQ m(-3) (35.62 pg m(-3)). The soil samples contained between 1.25 and 74.98 pg I-TEQ g(-1) (38.15-3,303.33 pg g(-1)), with an average of 19.06 pg I-TEQ g(-1) (1,077.11 pg g(-1)). These levels were higher than those previously reported by other investigators in a number of surveys. The furan homologues predominated in the air samples and some soil samples, and the soil PCDD/Fs levels decreased with increasing distance from the MSWI. Comparison of the homologue patterns and a multivariate statistical analysis showed that PCDD/Fs emission from the MSWI directly affected the pattern of PCDD/Fs in air, while the PCDD/Fs patterns in soil differed according to the location relative to the MSWI, roads, and construction sites. These results collectively indicate that the MSWI was the major PCDD/Fs emission source in this area, but that unidentified combustion sources and vehicles might influence the environment to some extent.  相似文献   

11.
Yu BW  Jin GZ  Moon YH  Kim MK  Kyoung JD  Chang YS 《Chemosphere》2006,62(3):494-501
The metallurgy industry and municipal waste incinerators are considered the main sources of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in many countries. This study investigated the emission factors and total emissions of PCDD/Fs and dioxin-like polychlorinated biphenyls (PCBs) emitted from metallurgy industries (including ferrous and nonferrous foundries) in Korea. The toxic equivalency (TEQ) emission factor of PCDD/Fs was the highest for secondary copper production, at 24451 ng I-TEQ/ton. The total estimated emissions of PCDD/Fs from these sources were 35.259 g I-TEQ/yr, comprising 0.088 g I-TEQ/yr from ferrous foundries, 31.713 g I-TEQ/yr from copper production, 1.716 g I-TEQ/yr from lead production, 0.111 g I-TEQ/yr from zinc production, and 1.631 g I-TEQ/yr from aluminum production. The total estimated annual amounts of dioxin-like PCBs emitted from these sources were 13.260 g WHO-TEQ/yr, comprising 0.014 g WHO-TEQ/yr from ferrous foundries, 12.675 g WHO-TEQ/yr from copper production, 0.170 g WHO-TEQ/yr from lead production, 0.017 g WHO-TEQ/yr from zinc production, and 0.384 g WHO-TEQ/yr from aluminum production. The highest emission factor was found for secondary copper smelting, at 9770 ng WHO-TEQ/ton.  相似文献   

12.
Chang MB  Huang HC  Tsai SS  Chi KH  Chang-Chien GP 《Chemosphere》2006,62(11):1761-1773
Distribution of PCDD/F (polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran) congeners at two electric arc furnaces (EAFs) in Taiwan is evaluated via intensive stack sampling and analysis. Two kinds of exhaust system in EAFs including stack system and shutter system are selected for measuring dioxin emissions. In addition, dioxin emissions during oxidation and reduction stages at EAF-A were characterized. Results indicate that the PCDD/F concentration of stack gas in EAF-A was 4.39 ng/N m3 while total Toxic Equivalent Quantity (TEQ) concentration was 0.35 ng I-TEQ/N m3. The PCDD/F concentration of stack gas in EAF-B was 2.20 ng/N m3 and the TEQ concentration was 0.14 ng I-TEQ/N m3. 1,2,3,4,6,7,8-HpCDF, OCDD and OCDF are the major contributors of the dioxin concentrations for two EAFs investigated and the percentage of PCDD/F in particulate phase increases as the chlorination level of the PCDD/F congener increases. The results obtained on gas/particulate partitioning of PCDD/Fs in flue gases prior to the APCD in EAFs indicate that more than 90% exists in particulate phase. In EAF-A, the PCDD/F concentration during oxidation stage is slightly higher than that measured during reduction stage, including the sampling points of CO converter outlet, prior to bag filter and stack. Majority of PCDD/Fs emitted from steel-making processes exists in particulate-phase (about 60–70%) at both EAFs investigated.  相似文献   

13.
This study aims to evaluate the influence of start-up on polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) concentration in the stack flue gas of incinerators and its contributing PCDD/F emission. The PCDD/F emission of the first sample among three consecutive stack flue gas samples of five intermittent incinerators, which sampled at a stable combustion condition after start-up, is 2-3 times higher than the mean of the others. For verifying the PCDD/F characteristics of incinerators during start-up, one continuous MSWI was investigated for two years. The elevated PCDD/F emissions of the MSWI during start-up could reach 96.9 ng I-TEQN m(-3) and still maintained a high PCDD/F emission (40 times higher than the Taiwan emission limit) even 18 h after the injection of activated carbon, indicating the memory effect. Taking the MSWI for example, which consists of four incinerators, the estimated annual PCDD/F emission from normal operational conditions was 0.112 g I-TEQ. However, one start-up procedure can generate approximately 60% of the PCDD/F emissions for one whole year of normal operations. And the PCDD/F emission, which is the result of the start-ups of four incinerators, was at least two times larger than that of a whole year's normal operations, without consideration for the PCDD/F emission contributed by the long lasting memory effect.  相似文献   

14.
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were monitored in stack gas and fly ash of various Korean incinerators and in air samples collected near the facilities. Concentrations of PCDD/Fs in emissions were investigated, and characteristic PCDD/F homologue patterns were classified using statistical analyses. The PCDD/F emission levels in stack gas and fly ash samples from small incinerators (SIs) were higher than those from municipal solid waste incinerators (MSWIs). The PCDD/F concentrations ranged between 0.38 and 1.16 pg I-TEQ/m3 (21.2-75.2 pg/m3) in ambient air samples. The lower-chlorinated furans were the dominant components in most of the stack gas and fly ash samples from SIs, although this was not the case for fly ash from MSWIs. This homologue pattern is consistent with other studies reporting a high fraction of lower-chlorinated furans in most environmental samples affected by incinerator emissions, and it can be used as an indicator to assess the impact of such facilities on the surrounding environment.  相似文献   

15.
Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in fourteen ambient air samples collected in twelve cities of five provinces and one large municipality in China. The PCDD/F concentrations varied from 2.6 to 120 pg m−3 (or from 0.04 to 1.93 pg I-TEQ m−3). Generally, TCDF was the dominant homologue group and as a rule the homologue concentration of PCDF decreased with rising chlorine substitution number of PCDF. In all cases 2,3,4,7,8-PeCDF was the most important contributor to the I-TEQ value, accounting for 35–57% of the total I-TEQ value. Higher PCDD/F levels in ambient air were found during winter. The highest PCDD/F levels were found in Chengdu, Sichuan Province. In general, the PCDD/F levels in this study were in the same range as in other studies in China.  相似文献   

16.
To understand the fate of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in a fly ash treatment plant that used the Waelz rotary kiln process (hereafter the Waelz process), the samples of input and output media were collected and analyzed. The most important PCDD/F source in input mass was electric arc furnace (EAF) fly ash, which had a mean PCDD/F content of 18.51 ng/g and contributed more than 99% of PCDD/F input mass, whereas the PCDD/F input mass fractions contributed by the coke, sand, and ambient air were only 0.04%, 0.02%, and 0.000002%, respectively. For the PCDD/F output mass in the Waelz process, the major total PCDD/F contents of 43.73 and 10.78 ng/g were in bag-filter and cyclone ashes, which accounted for approximately 69% and 17%, respectively, whereas those of stack flue gas and slag were 14% and 0.423%, respectively. The Waelz process has a dechlorination mechanism for higher chlorinated congeners, but it is difficult to decompose the aromatic rings of PCDD/Fs. Therefore, this resulted in the accumulation of lower chlorinated congeners. The output/input ratio of total PCDD/F mass and total PCDD/F international toxicity equivalence (I-TEQ) was 0.62 and 1.19, respectively. Thus, the Waelz process for the depletion effect of total PCDD/F mass was positive but minor, whereas the effect for total PCDD/F I-TEQ was adverse overall.  相似文献   

17.
The atmospheric fate of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was simulated for the year 2000 in North America using a SMOKE/CMAQ-based chemical transport model that was modified for this purpose. The 1999 USEPA emission inventories of PCDD/Fs and criteria pollutants were used. The 1995 Canadian emission inventory of criteria pollutants and the 1995 Canadian area source emissions for PCDD/Fs were used with the 2000 Canadian point source emissions. Modifications to CMAQ involved coupling it with dual organic matter (OM) absorption and black carbon (BC) adsorption models to calculate PCDD/F gas–particle partitioning. The model satisfactorily reproduced the particle bound fractions at all rural sites for which there were measured data and across the whole domain, the modeled vs. measured differences in particle bound fractions were less than 20% for nearly all congeners. The model predicted ambient air PCDD/F concentrations were also consistent with measurements. Simulated deposition fluxes were within 58% of direct measurements. PCDD/F atmospheric depositions to each of the Great Lakes were estimated for the year 2000. The results indicate that approximately 76% of the total deposition of PCDD/Fs to the Great Lakes (in W-TEQ, or toxic equivalent units as defined by the World Health Organization) is attributed to PCDD/Fs absorbed into OM in aerosol. For all of the lakes, more than 92% of all deposition is particle phase wet deposition and only 5–8% is particle phase dry deposition. Wet deposition from the gas phase is negligible. Of the 17 toxic PCDD/F congeners, the Cl4–5DD/F compounds contribute approximately 70% to the total atmospheric deposition to the Great Lakes. The seasonal changes in the PCDD/F deposition flux track variations in ambient temperature.  相似文献   

18.
The present study was intended to establish an inventory of PCDD/F emissions in Tarragona Province (Catalonia, NE Spain), as a preliminary phase in the development of a flow analysis of PCDD/Fs in this Province. In 1999, global PCDD/F emissions reached a value of 2.24 g I-TEQ/y, which means a density of 3.8 micrograms I-TEQ/inhabitant/y. The low amount of PCDD/Fs emitted to air by the only municipal solid waste incinerator in the Province (approximately 0.04% of the total) has been one of the most notable results. As a reflection of uncertainties in the estimates for individual sources, the 90th percentiles of PCDD/F releases for 1999 ranged up to 4.1 g I-TEQ/y.  相似文献   

19.
This study characterized the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the stack flue gases of 17 industrial sources, which were classified into 10 categories. The results show that the mean PCDD/PCDF concentration of secondary zinc smelter (Zn-S) and secondary copper smelter (Cu-S) is 2.44 ng international toxic equivalent (I-TEQ)/Nm3 (N represents normal conditions at 0 degrees C, 760 mmHg), which was found to be significantly greater than that of industrial waste incinerators (mean concentration = 0.15 ng I-TEQ/Nm3). These results imply that the controlling of secondary metallurgical melting processes is more important than industrial waste incineration for the reduction of PCDD/PCDF emissions. The mean emission factors of cement production, Zn-S and Cu-S, are 0.052, 1.99, and 1.73 microg I-TEQ/t product, respectively. For industrial waste incineration, the mean emission factors of waste rubber, waste liquor, waste sludge, industrial waste solid (IWI)-1, IWI-2, IWI-3, and IWI-4 are 0.752, 0.435, 0.760, 6.64, 1.67, 2.38, and 0.094 microg I-TEQ/t feed, respectively. Most of the PCDD/PCDF emission factors established in this study are less than those reported in previous studies, which could be because of the more stringent regulations for PCDD/PCDF emissions in recent years.  相似文献   

20.
The exhaust emissions of 17 polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were investigated in two spark-ignition light-duty vehicles, one gasohol-fueled and a flexible-fuel one fueled with hydrated ethanol. Gasohol is a mixture of gasoline and 22% ethanol. The influence of fuel type and quality, lubricant oil type, and use of fuel additives on the formation of these compounds was tested using standardized U.S. Federal Test Procedure (FTP)-75 cycle tests. The sampling of the PCDD/Fs followed the recommendations of a modified U.S. Environmental Protection Agency (EPA) Method 23 (www.epa.gov/ttn/ emc/promgate/m-23.pdf) and the analysis basically followed the U.S. EPA Method 8290 (http://www.epa.gov/osw/ hazard/testmethods/sw846/pdfs/8290a.pdf). Results showed that emission factors of PCDD/Fs for the.gasohol vehicle varied from undetected to 0.068 pg international toxic equivalency (I-TEQ) km(-1) (average of 0.0294 pg I-TEQ km(-1)), whereas in the ethanol vehicle they varied from 0.004 to 0.157 pg (I-TEQ) km(-1) (average of 0.031 pg I-TEQ km(-1)). In the gasohol-powered vehicle, the use of fuel additive diminished the emission of Octachlorodibenzo-p-dioxin (OCDD) significantly, whereas in the ethanol vehicle no significant associations were observed between the investigated variables and the emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号