首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Foliar absorption of resuspended 90Sr, root uptake and contamination adhering to leaf surfaces (i.e. soil loading) were compared at two Chernobyl-contaminated sites, Chistogalovka and Polesskoye. Although foliar absorption of resuspended 90Sr was quantifiable, its contribution amounted to less than 10% of the plants' total, above-ground contamination. Root uptake was 200 times greater than foliar absorption at the near-field site of Chistogalovka and eight times greater at Polesskoye, where the fallout consisted of the more soluble condensation-type, rather than fuel particles. Strontium's bioavailability exceeded that of 137Cs (analyzed in the same plants) by orders of magnitude when compared using concentration ratios. Simplistic, cumulative effective dose calculations for humans ingesting 90Sr- and 137Cs-contaminated plants revealed that the dose at Chistogalovka was greater from 90Sr (185 mSv vs. 3 mSv from 137Cs), while at Polesskoye the dose from 137Cs (66 mSv) was 30 times greater than from 90Sr (2 mSv).  相似文献   

2.
The (90)Sr and (137)Cs uptake by the plant Helianthus annuus L. was studied during cultivation in a hydroponic medium. The accumulation of radioactivity in plants was measured after 2, 4, 8, 16 and 32 days of cultivation. About 12% of (137)Cs and 20% of (90)Sr accumulated during the experiments. We did not find any differences between the uptake of radioactive and stable caesium and strontium isotopes. Radioactivity distribution within the plant was determined by autoradiography. (137)Cs was present mainly in nodal segments, leaf veins and young leaves. High activity of (90)Sr was localized in leaf veins, stem, central root and stomata. The influence of stable elements or analogues on the transfer behaviour was investigated. The percentage of non-active caesium and strontium concentration in plants decreased with the increasing initial concentration of Cs or Sr in the medium. The percentage of (90)Sr activity in plants decreased with increasing initial activity of the nuclide in the medium, but the activity of (137)Cs in plants increased. The influence of K(+) and NH(4)(+) on the uptake of (137)Cs and the influence of Ca(2+) on the uptake of (90)Sr was tested. The highest accumulation of (137)Cs (24-27% of the initial activity of (137)Cs) was found in the presence of 10 mM potassium and 12 mM ammonium ions. Accumulation of about 22% of initial activity of (90)Sr was determined in plants grown on the medium with 8 mM calcium ions.  相似文献   

3.
The transfer of 90Sr to rice plants following its acute ground deposition was examined experimentally in a greenhouse. Lysimeters were flooded after being filled with the soil monoliths from 12 paddy fields. A solution of 90Sr was applied to the standing water in the flooded lysimeters at the pre-transplanting stage or booting stage. Applied 90Sr was mixed with the topsoil only after the pre-transplanting application (PTA). The transfer was quantified with the areal transfer factor (TF(a), m2 kg(-1)-dry) defined as the ratio of the plant concentration to the initial ground deposition. In the PTA, the first-year TF(a) values in the 12 soils were in the range of 8.2 x 10(-3) -2.1 x 10(-2) and 1.7 x 10(-4) -3.6 x 10(-4) for the straws and hulled seeds, respectively. The TF(a) values from the booting-stage application (BSA) were higher than those from the PTA by a factor of up to four. The ratios of the seed TF(a) to the straw TF(a) were, on the whole, higher in the BSA. The 90Sr TF(a) in the PTA was negatively correlated with the soil pH and, to a lesser degree, the exchangeable Ca content. In the second year, the TF(a) in the PTA reduced to 53-90% of that in the first year. A more significant reduction, in general, occurred in a sandier soil. Based on the four consecutive years' transfer data, an overall half-time of the 90Sr TF(a) was estimated to be 2.2 years.  相似文献   

4.
Potted rice plants were exposed to atmospheric HTO in a box outdoors for 1 h at 9 different times from booting to yellow-ripe stages. It is indicated that the leaf TFWT concentration may reach equilibrium within 1 h in clear weather. The plant TFWT concentration decreased at a rapid rate for the first several hours and at a much slower rate thereafter. The decrease till harvest was by factors of 600-95,000 depending on the plant parts and exposure times. The time course of the ear OBT concentration was characterized by the exposure time. After exposure at the booting to heading stages, the leaf OBT concentration decreased rapidly for the first several hours and then very slowly. The plant OBT concentration was initially about 2 orders of magnitude lower, but at harvest an order of magnitude higher, than the TFWT concentration. The OBT concentration in hulled seeds at harvest varied with exposure times by a factor of 70, being highest in the exposure performed at the earlier stage of rapid grain growth. Also in this exposure, the plant total OBT was greatest due to the seed OBT.  相似文献   

5.
In this paper a study of the foliar uptake and translocation of 134Cs and 85Sr in a herbaceous fruit plant is presented. In particular, absorption, translocation and loss of these radionuclides in strawberry plants have been studied in relation to the age of contaminated leaves. Strawberry plants were contaminated by distributing droplets of an aqueous solution containing 134CsCl and 85SrCl2 on the surface of two leaves per plant. One half of the plants was contaminated through two young leaves, a second half through two old leaves. Sets of plants were collected 1 day, 7 days and 15 days after contamination. One half of them was rinsed with double distilled water before gamma analysis. Rinsing contaminated leaves removes on average 55% of the applied 134Cs and 45% of 85Sr. The activity removed decreases during the 15 days of the experimental study, both for 134Cs and for 85Sr, suggesting an increase in foliar absorption during this period. The activity removed does not differ between old and young leaves. "External loss" is lower for young than old contaminated leaves. "Internal loss" through translocation occurs mainly for 134Cs. Translocation coefficients from contaminated leaves to fruits are two orders of magnitude higher for 134Cs (4.0%), than for 85Sr (0.05%). Leaf to fruit translocation coefficients for 134Cs are higher from young leaves (5.8%), than from old leaves (2.3%).  相似文献   

6.
Rice is a staple food in Japan and other Asian countries, and the soil-to-plant transfer factor of 137Cs released into the environment is an important parameter for estimating the internal radiation dose from food ingestion. Soil and rice grain samples were collected from 20 paddy fields throughout Aomori Prefecture, Japan in 1996 and 1997, and soil-to-polished rice transfer factors were determined. The concentrations of 137Cs, derived from fallout depositions, stable Cs and K in paddy soils were 2.5-21 Bq kg(-1), 1.2-5.3 and 5000-13000 mg kg(-1), respectively. The ranges of 137Cs, stable Cs and K concentration in polished rice were 2.5-85 mBq kg(-1) dry wt., 0.0005-0.0065 and 580-910 mg kg(-1) dry wt., respectively. The geometric mean of soil-to-polished rice transfer factor of 137Cs was 0.0016, and its 95% confidence interval was 0.00021-0.012. The transfer factor of 137Cs was approximately 3 times higher than that of stable Cs at 0.00056, and they were well correlated. This implied that fallout 137Cs, mostly deposited up to the 1980s, is more mobile and more easily absorbed by plants than stable Cs in the soil, although the soil-to-plant transfer of stable Cs can be used for predicting the long-term transfer of 137Cs. The transfer factors of both 137Cs and stable Cs decreased with increasing K concentration in the soil. This suggests that K in the soil was a competitive factor for the transfers of both 137Cs and stable Cs from soil-to-polished rice. However, the transfer factors of 137Cs and stable Cs were independent of the amount of organic materials in soils.  相似文献   

7.
The total amounts of 137Cs and 90Sr transported from Finland by rivers into the Gulf of Finland, Gulf of Bothnia and Archipelago Sea since 1986 were estimated. The estimates were based on long-term monitoring of 137Cs and 90Sr in river and other surface waters and on the statistics of water discharges from Finnish rivers to the above sub-areas of the Baltic Sea. The total amounts of 137Cs and 90Sr removed from Finland into the Baltic Sea during 1986-1996 were estimated to be 65 and 10 TBq, respectively. The results show that, although the deposition of 137Cs was much higher than that of 90Sr after the Chernobyl accident, the amount of 137Cs removed from Finland is only six times as high as that of 90Sr. This emphasizes the importance of 90Sr while considering radiation doses from surface waters and 137Cs while estimating doses via pathways from catchment soil, lake sediments and biota after a fallout situation.  相似文献   

8.
Adequate radioprotection of the environment requires the identification of biomonitors sensitive to the variation of its radionuclide content. Due to the chemical similarities between calcium and strontium, calcified tissues of mammals are considered to be good 90Sr biomonitors. This work considered Cervus elaphus antlers which, being shed annually, can give information about the importance of radiostrontium contamination in an ecosystem in the time period required for the growth of the antler. The samples were collected at various points of W and SW Spain. The mean value of their 90Sr content was (70 ± 43 (S.D.)) Bq/kg d.w., range (16-218) Bq/kg d.w., and the radionuclide was evenly distributed in the different parts of the antler. There was a good correlation between the antlers’ 90Sr content and the 90Sr deposited in the soil. The antlers’ content of 226Ra (from the natural uranium series) and the contents of some stable elements (Ca, Mg, Sr, and K) were also determined. The values for these stable elements were practically constant in the analyzed samples, and the concentrations measured decreased in the following order:Ca » Mg > K > Sr » 90Sr > 226Ra  相似文献   

9.
As part of a requirement to improve the assessment of the impact of radioactive fallout on consumed agricultural products, bean plants at four development stages (seedlings, preflowering, late flowering and mature plants) were contaminated by dry deposition of (137)Cs, (85)Sr, (133)Ba and (123m)Te aerosols. The influence of two rain scenarios and of the development stage upon contamination on interception, retention, and translocation to pods was studied. Interception of the four radionuclides was almost identical and varied from 30 to 60% with increasing development stage. The most important rain parameter was the time which elapsed between contamination and the first rain. Whatever the development stage, rain washed off more cesium from the leaves when it occurred 2 days after the deposit (37% at the seedling stage, for example) rather than later on (6 days, 27%), due to rapid migration of Cs in the plant. The first rain washed off nearly 40% of Ba whatever the scenario. For later stages, Sr and Ba were more washed off by heavy weekly rains than by weak twice-a-week rains, perhaps because of the Sr/Ba-contaminated material loss associated with wash off (desquamation of cuticles). Te showed little wash off (less than 5%). Wash off decreased with an older development stage for a weak rain intensity, due to the superimposition of leaves. Heavy rains removed this shelter effect. At harvest, rain effect was no longer detectable as foliar activity was similar for both rain scenarios. Translocation factors (TF) for strontium and barium increased from 6 x 10(-3) to 1 x 10(-1) with the plant development stage upon contamination, whereas those for cesium remained almost unchanged between 2 x 10(-1) and 4 x 10(-1). Flowering is the most critical stage towards residual contamination in pods at harvest, with the exception of direct deposit on pods at the mature stage (TF values are one order of magnitude higher). TF value for Te was 6.5 x 10(-2) and was due to direct deposit. Modelling reflected the trends, through the differential values of the wash off and absorption coefficients, of what was reported for experimental results.  相似文献   

10.
11.
The long-term behavior of 90Sr was investigated from 1987 to 1997 in fifteen lakes in southern and central Finland following the 1986 Chernobyl accident. Both water and fish samples (perch, pike, vendace) were analyzed. 90Sr stays long in the freshwater ecosystem; the observed half-lives during the study period were generally around 10 years in water and even longer in fish. One lake exhibited very different behavior for 90Sr, with elevated levels in fish and water and very short observed half-life in fish, less than 2 years. Concentration factors of 90Sr in fish (Bqkg−1 f.w. in fish/Bqkg−1 in water) among the studied lakes significantly correlated with both the Ca concentration and electrical conductivity of the water. More 90Sr was transferred into fish in lakes with a low electrical conductivity and a low Ca concentration. Among other water parameters evaluated were pH, color, total nitrogen, and phosphorus.  相似文献   

12.
According to the soil-to-plant transfer concept generally used in dose assessment modeling, the plant uptake of a radionuclide should depend linearly on its concentration in the soil. In order to validate this concept for (90)Sr in a semi-natural ecosystem, plant and soil samples were taken at 100 plots of a 100 x 100 m(2) area within an alpine pasture near Berchtesgaden, Germany. At three plots, the vertical distribution of (90)Sr in the soil was determined in addition. A statistically significant correlation between the soil and plant concentration of (90)Sr was not detectable (Spearman correlation coefficient R=-0.116, p>0.05) within the range of the Sr-concentration covered (15-548 Bq kg(-1) dry soil and 17-253 Bq kg(-1) dry plant material). Thus, the prerequisite of the soil-to-plant transfer concept was not fulfilled for (90)Sr at this site. Organic carbon and total nitrogen were also determined in the soil samples. Both elements were highly correlated (R=0.912, p<0.001), their ratio being C/N=10.9+/-0.7. While C was positively correlated with the (90)Sr concentrations in the soil (R=0.342, p<0.001), negative correlations were observed for the plant concentrations (R=-0.286, p<0.01) and the concentration ratios (R=-0.444, p<0.001) of (90)Sr. These results are compared with those recently obtained for (137)Cs by Bunzl et al. (J Environ Radioactiv 48 (2000) 145).  相似文献   

13.
Uptake and distribution of 137Cs and 90Sr in salix viminalis plants   总被引:2,自引:0,他引:2  
Agricultural areas in middle and northern parts of Sweden were contaminated with radionuclides after the Chernobyl accident in 1986. Alternative crops in these areas are biomass plantations with fast-growing Salix clones for energy purposes. The uptake and internal distribution of 137Cs and 90Sr in Salix viminalis were studied. Plants were grown in microplots under field conditions. The soils in the experimental site had been contaminated in 1961 with 35.7 and 13.4 MBq m(-2) of 137Cs and 90Sr, respectively. The experiment was carried out during three years. The plots were fertilised with 60 kg N ha(-1) and three treatments of K, consisting of 0, 80 and 240 kg K ha(-1) during the first two years. The activity concentration of 137Cs in the different plant parts varied between 140 and 20,000 Bq kg(-1) and was ranked in the following order: lowest in stems < cuttings < leaves < roots. The fine roots (0-1 mm) had the highest 137Cs activity concentration. One-year-old stems had higher 137Cs activity concentrations than two-year-old stems. The activity concentration of 137Cs in the plants was significantly affected by K-supply and was higher in the 0 kg K treatment than in the 80 or 240kg K treatment. Leaves contained more 90Sr than stems and cuttings.  相似文献   

14.
Radionuclide transfer parameters and dose-rates for an adult ringed seal from Svalbard have been determined based on empirical and estimated tissue activity concentrations and detailed dietary and habitat information. Whole-body equivalent concentration factors determined for anthropogenic radionuclides ranged from 10(1) ((90)Sr) to 10(2) ((137)Cs, (238)Pu and (239,240)Pu), while natural radionuclides ranged from 10(2) ((210)Pb) to 10(4) ((210)Po). Employing a dietary composition of 40% fish, 40% zooplankton and 20% benthic invertebrates, a whole-body biological half-life of 29 days was derived for (137)Cs. A total dose-rate of approximately 0.19microGyh(-1) (1.7mGya(-1)) was derived for an adult ringed seal; this dose-rate is virtually entirely attributable to the internal components of (210)Po and (40)K. The dose-rates associated with the presence of anthropogenically derived radionuclides in the present assessment fall many orders of magnitude below the dose-rates at which any biological effects would be expected.  相似文献   

15.
It was shown that along the Eastern Ural Radioactive Trace central axis, about 100 km in length, decrease of the 90Sr and 137Cs deposition densities in soil samples may be described as an exponential function. At the western and eastern periphery of the trace, 90Sr contents in soils approached to the background level due to global fallout. 90Sr and 137Cs concentrations in seeds of some herbaceous plants have been determined. The radionuclide concentrations and the resulting dose loads upon plant seeds showed an excess over the background level of about two or three orders of magnitude.  相似文献   

16.
The results of an experimental study on the behaviour of 134Cs, 85Sr and 65Zn in processing tomato plants grown in peat substrate are presented. Plants were contaminated by wet deposition of 134Cs, 85Sr and 65Zn, either by sprinkling the above ground part at two phenological stages or by administering 134Cs, 85Sr and 65Zn to the soil. The plants contaminated at the second phenological stage intercepted 38.3% less than those contaminated at the first stage, although leaf area increased by more than double. Transfer coefficients from peat soil to ripe fruit for 134Cs are significantly higher than those for 85Sr and 65Zn. Leaf to fruit transfer coefficients for 134Cs are one order of magnitude higher than for 65Zn and two orders higher than for 85Sr. Only when deposition affects fruits, as at the second phenological stage, are transfer coefficients to fruits similar for the three radionuclides.  相似文献   

17.
Liming of lakes is considered one possible remedial action to reduce the accumulation of radionuclides into fish in the case of a radiological accident. These responses were tested in field conditions in a small acidified lake that was divided into two parts: one limed with CaCO3 and the other half left as an unlimed control. The transfer of 90Sr from water into fish decreased on average by 50% during the first year after liming. However, at the same time the 90Sr concentration in water increased, reaching a maximum within 6 months after liming. Approximately 50% more 90Sr was detected in water in the limed part of the lake than on control side during the first year. 90Sr was most probably released from the sediment as the Ca concentration and pH of the water increased. As a result of these two processes, which counterbalanced each other (increased release of 90Sr into water from sediment and decreased transfer of 90Sr from water into fish), the 90Sr concentration in fish did not notably differ between the limed and control sides of the lake. Liming may only be suitable as a remedial action if carried out immediately after a radiological accident, before significant amounts of radionuclides have been deposited in lake sediments. In the case of 137Cs, the effect of liming was less pronounced. 137Cs activity concentration in water increased in the first year by 20% and uptake by fish decreased by 20%.  相似文献   

18.
A rapid method for the determination of 90Sr in the presence of 137Cs using the Cherenkov radiation technique is described. The contribution of 137Cs to gross Cherenkov radiation (90Y + 137Cs) was examined for 137Cs /90Sr ratios ranging from 0.09 to 2.50 for 137Cs activities ranging from 2 to 1,211 Bq. Results from direct Cherenkov radiation measurement and results after radiochemical separation of 90Y from 90Sr for samples containing both 90Sr and 137Cs were compared. Errors below 5% were obtained for 137Cs /90Sr ratios lower than 1, when no separation was performed, independently of the activity level. However, errors between 10% and 35% were obtained for 137Cs/90Sr ratios higher than 1. In order to determine 90Sr activity in the presence of 137Cs using the Cherenkov technique, a multiple linear regression analysis model was established to correct the data for 137Cs content. The mathematical correction proposed was validated using 66 artificially contaminated lettuce samples in a laboratory experiment by taking into account the activity levels of 137Cs and 90Sr and the radionuclide ratios. Comparison of mathematically corrected radionuclide ratios with the results obtained without correction shows that, for radionuclide ratios higher than 1, error values for measuring 90Sr activity using the mathematical model were much smaller than when no radiochemical separation was performed. On the other hand, for ratios lower than 1, error values when measuring 90Sr activity with radiochemical separation were smaller than when mathematical correction was performed. In spite of this, the mathematical correction is an appropriate way of reducing the time needed to determine radiostrontium using the Cherenkov radiation technique. The method proposed could be a powerful tool for environmental research whenever the contents of 90Sr and 137Cs have to be determined.  相似文献   

19.
90Sr is a fission byproduct of uranium and plutonium, and it presents a major health problem in the environment. A field test on the transport of various radionuclides including 90Sr in an unsaturated Chinese loess was conducted under artificial rain conditions from July 1997 to August 2000. The vertical concentration distribution of 90Sr displayed an unusual profile of double concentration peaks, which were separated by a thin (0.7 cm) source layer. In order to interpret the double-peak concentration profile, the transport of 3H and 90Sr in the unsaturated Chinese loess under artificial sprinkling conditions was simulated using WATERM, a numerical code for simulating flow field, and NESOR, also a numerical code but for simulating nuclide migration. The models were able to adequately simulate the double-peak concentration profile. The observation suggested that the fine arenaceous quartz layer, though 0.7 cm thick, formed a capillary barrier together with the local loess, which prevented water from penetrating. A significant discrepancy was observed between the model-fitted distribution coefficient (Kd) of 90Sr and that determined from independent laboratory experiments, which can be attributed to a number of factors such as the capillary barrier effect, solution-to-solid ratio and soil water content. Therefore, when the model is used for predictive purposes where Kd is used as an input parameter, Kd must be determined under well controlled conditions by taking into account these factors as well as the heterogeneity in the field.  相似文献   

20.
(137)Cs and (90)Sr background levels in soil and plant around Tianwan Nuclear Power Plant (NPP) are reported. Eighty-four soil samples and 44 plant samples were collected from March 2000 to April 2002. The samples were analyzed by gamma spectrometry and radiochemical separation procedure to quantify (137)Cs and (90)Sr radioactivities. The concentrations (Bqkg(-1) dry weight) have been observed in the range of 0.6-1.6 for (90)Sr and 1.4-6.9 for (137)Cs in soils, their average values are 1.0+/-0.3 and 4.6+/-1.6, respectively, which are relatively lower than the reported values in neighboring countries. The mean concentrations (in Bqkg(-1) fresh weight except for tea and grass which is expressed in Bqkg(-1) dry weight) of (137)Cs and (90)Sr are 0.1+/-0.03 and 7.7+/-4.1 in pine needle, 0.27+/-0.05 and 3.0+/-1.1 in tea, 0.65+/-0.19 and 2.1+/-0.3 in grass, 0.033+/-0.021 and 0.084+/-0.045 in wheat, 0.019+/-0.01 and 0.23+/-0.06 in China cabbage, and 0.009+/-0.007 and 0.024+/-0.084 in rice, respectively. The pine needle and tea can be regarded as indicator species for (90)Sr and (137)Cs. The soil-to-plant transfer factor (TF) values of (90)Sr and (137)Cs are, respectively, 0.022 and 0.031 for rice, 0.066 and 3.83 for China cabbage, 0.0088 and 0.089 for wheat, and 0.037 and 0.56 for grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号