共查询到14条相似文献,搜索用时 224 毫秒
1.
为了优化香港环境监测网络,收集香港14个监测站2011年1月1日至2015年11月30日的颗粒物PM_(2.5)、PM_(10)的小时数据进行统计分析。对PM_(2.5)进行聚类,并利用日均浓度变化图进行验证,结果表明,可将监测站分为4类(A、B、C、D类),A类位于城市郊区,B类则位于港口附近,且A、B类的PM_(2.5)日变化特征均呈现双峰型分布,峰值分别出现在09:00和21:00。对PM_(10)进行类似分析结果表明,监测站同样可以分为4类,A类位于九龙区,B类则位于港口附近,而且A、B类的PM_(10)日变化双峰分别出现在11:00和20:00左右。说明污染源头及地形的相似致使某些监测站颗粒物浓度的变化出现相同的趋势,导致监测设备的浪费和管理的冗余。建议建立更高效的空气管理系统,将冗余设备转移到其他地区,扩大空气监控区域。对PM_(2.5)/PM_(10)聚类结果表明,将监测站分为4类,B类均属于路边站,C类则位于居民区。同时还发现同类监测站PM_(2.5)/PM_(10)数值变化相同,并且可以用其中一个站的PM_(2.5)和PM_(10)浓度及另一个站的PM_(2.5)或PM_(10)浓度预测PM_(2.5)或PM_(10)浓度,为优化监测资源提供了一种新的思路。 相似文献
2.
精准预测PM2.5浓度能为大气污染治理提供科学依据。为了在明确PM2.5排放量的情况下使PM2.5浓度变化具有可获得性,基于全国各省份2013—2017年PM2.5月均浓度和月排放量历史监测数据,构建两者间的数学关系模型,通过Pearson分析将全国各省份划分为两种类型(分布规律和分布分散),并使用2018—2020年PM2.5月均浓度数据验证数学模型的精度。结果表明:在PM2.5月排放量与月均浓度散点分布规律的19个省份中,11个省份的决定系数(R2)介于0.60~0.90之间,8个省份的R2介于0.50~0.60之间。分布规律省份数学模型精度验证结果显示,14个省份的均方根误差(RMSE)介于6.00~16.00之间,3个省份的RMSE介于16.00~20.00之间。在PM2.5月排放量与月均浓度散点分布分散的10个小组中,5个小组的R2介于0.70~0.90之间,4个小组的R2介于0.60~0.70之间。分布分散省份数学模型精度验证结果显示,8个小组的RMSE介于6.00~16.00之间。因此,通过拟合方法得出的数学模型对于PM2.5浓度预报具有一定的适用性,且可以较准确地预测未来情景中的PM2.5浓度变化。 相似文献
3.
切割器是PM2.5监测设备的关键部件,其切割性能直接影响PM2.5和PM1等环境空气颗粒物质量浓度监测数据的真实、准确。该研究采用粒径范围为0.6~4 μm的聚苯乙烯微球(PSL)标准粒子、单分散气溶胶发生器、混匀(分流)装置和颗粒物数量浓度测量仪等仪器设备集成搭建了适用于PM1和PM2.5切割器性能测试的通用系统。测试结果表明:该系统发生的PSL粒子能够保持稳定的数量浓度,并在切割气路和非切割气路间具有较好的数量浓度一致性,能在3 h内快速完成一台切割器切割效率的测试。采用该系统测试了1种类型的PM1切割器和3种类型的PM2.5切割器的关键切割性能。结果显示:VSCC型PM2.5切割器D50分别为2.48、2.52、2.48 μm,σg1分别为1.20、1.23和1.15,σg2分别为1.21、1.21和1.16,各项关键性能指标均符合美国和中国相关环境保护标准规范的要求,且优于SCC型和URG型切割器。推荐使用VSCC型切割器开展环境空气中PM2.5质量浓度的监测。SCC型PM1切割器的D50为0.91 μm,σg1和 σg2为1.20和1.18,结合其他相关研究,建议PM1切割器D50合格标准应为(1.0±0.1)μm,σg合格标准为不超过1.20。 相似文献
4.
内蒙古半干旱草原区大气气溶胶浓度以及散射等特性对生态环境、气候变化与预测研究有重要意义,文利用2009年1~4月在锡林浩特观象台草原站的观测资料,分析了冬、春季背景大气气溶胶质量浓度、黑碳质量浓度、散射系数的分布特征。研究发现,背景天气下,PM10、PM2.5、PM1.0浓度值都较低,平均值分别为22.7、9.5、6.1μg/m3,3种PM浓度值间的相关性不同;黑碳浓度平均值为0.59μg/m3,小粒子中的含量较高,其日分布规律受人类活动影响较大,与各PM浓度分布有较大不同;散射系数平均值为31.2Mm-1,与PM10、PM2.5、PM1.0、黑碳质量浓度都显著相关。三种PM中,PM2.5对散射和吸收的影响最大。风速、相对湿度对不同粒径的PM以及黑碳浓度、散射系数的影响有所不同。 相似文献
5.
采集贵阳市老城区夏季5个典型监测点(太慈桥、贵州师范大学、大西门、省政府及省植物园)的样品进行PM2.5、PM10质量浓度分析。同时对PM2.5中PAHs的质量浓度进行分析。结果表明:贵阳市夏季PM2.5和PM10浓度排序均为太慈桥省政府大西门贵州师范大学省植物园,且PM2.5和PM10之间有良好的相关性,PM10=0.931 3 PM2.5+0.019 4,R2=0.996 7,PM2.5污染较重。此外,5个监测点总PAHs和苯并(a)芘的分析结果均为太慈桥省政府大西门贵州师范大学省植物园,苯并(a)芘浓度均未超标。 相似文献
6.
2013年3月—2014年2月期间,设置1个监测点位,采集了西安市区大气环境中PM10和PM2.5样品,采用重量法测定了PM2.5和PM10质量浓度。结果表明,西安市区PM2.5质量浓度为16~558μg/m3,平均值为128μg/m3,超标率69.1%;PM10质量浓度范围为32~887μg/m3,平均值为249μg/m3,超标率71.8%。虽然PM2.5和PM10质量浓度的逐日变化幅度比较大,但是整体变化趋势非常相似,存在显著的正相关关系(r=0.831 9)。PM2.5和PM10质量浓度存在明显的季节变化,均为冬季最高,春季次之,秋季较低,夏季最低。ρ(PM2.5)/ρ(PM10)为0.245~0.822,平均值为0.510,说明PM2.5在PM10中所占比例大于PM2.5~10;此外,该比值呈现一定的季节变化规律,冬季、夏季较高,秋季次之,春季最低。霾天气发生时,该比值和PM2.5质量浓度明显高于无霾天气。 相似文献
7.
对2014—2016年齐齐哈尔市PM_(2.5)与PM_(10)质量浓度的时间变化特征进行简要分析,并探究PM_(2.5)/PM_(10)以及PM_(2.5)与PM_(10)的相关性。结果表明:2014—2016年齐齐哈尔的PM_(2.5)与PM_(10)的年均质量浓度分别为36.7、62.9μg/m~3,且呈逐渐下降趋势;冬季的PM_(2.5)与PM_(10)浓度最高,秋季次之,春季与夏季相对较低;2014—2016年PM_(2.5)与PM_(10)质量浓度月变化趋势基本相同,整体呈现2—6月逐渐下降,9—11月逐渐上升的规律;PM_(2.5)与PM_(10)质量浓度的日变化均呈双峰现象;对PM_(2.5)与PM_(10)进行线性拟合,相关系数为0.896 3。同时,残差分析也说明两者拟合情况良好,四季相关系数为r_(秋季)(0.982 2)r_(冬季)(0.964 4)r_(夏季)(0.943 9)r_(春季)(0.829 6);2014—2016年PM_(2.5)/PM_(10)平均值为55.27%,大气颗粒物PM_(2.5)的贡献率高达一半以上。 相似文献
8.
为深入了解邢台市PM_(10)、PM_(2.5)浓度变化情况和气流后向轨迹,对邢台市2013—2016年环境大气颗粒污染物监测数据进行了分析,同时利用HYSPLIT模型计算出逐日72 h后向气流轨迹。结果表明:邢台市的PM_(10)和PM_(2.5)质量浓度在2013—2016年间呈逐年下降趋势,PM_(10)和PM_(2.5)质量浓度高值出现在冬季(296μg/m~3和192μg/m~3),最低值出现在夏季(140μg/m~3和80μg/m~3),PM_(10)和PM_(2.5)质量浓度在日变化上均呈\"双峰双谷\"型分布;后向轨迹的季节聚类分析表明,春季大气颗粒物污染以粒径2.5~10μm的颗粒污染物为主,夏季、秋季和冬季的大气颗粒物污染以PM_(2.5)为主;逐日聚类分析表明,在路径为西北偏西向的、途经多个沙源地的气流影响下,邢台市的PM_(10)和PM_(2.5)质量浓度处于一个相对高值;来源于偏南向的气流由于化合反应,污染物积聚导致PM_(10)、PM_(2.5)质量浓度也处于相对高值;在来源于西北向和偏北向的、水汽含量相对较低的气流影响下,邢台市的PM_(10)、PM_(2.5)质量浓度出现一个明显的下降。 相似文献
9.
10.
为研究重庆市大气颗粒物的污染特征及其来源,于2010年3—10月在主城区分别采集PM1.0、PM2.5和PM103种粒径的颗粒物样品,利用XRF分析其中的26种元素浓度。结果表明,重庆市主城区S元素在各粒径中含量都较高,细粒子中K的含量较高,粗粒子中Si、Ca和Fe的浓度较大。富集因子分析表明,主城区Cd、S、Se等污染元素的富集系数较大,且粒径越小,富集现象越明显。利用因子分析得出土壤风沙、扬尘、燃煤的燃烧、机动车燃油产生的尾气排放、生物质燃烧排放是重庆市颗粒物污染的主要来源。 相似文献
11.
应用机器学习算法开展空气质量预测已成为当前研究热点之一,空气质量监测数据具有显著的时空特征,即具有时间维度时序特征和空间维度传输演化特征。面向空气质量监测数据,联合LSTM提取的时间特征和GCN提取的空间特征,提出预测PM2.5浓度的LSTM-GCN组合模型。以北京市35个空气质量监测站2018—2020年监测数据进行仿真实验,并将LSTM-GCN模型与LSTM模型、GCN模型以及时空地理加权回归模型(GTWR)进行对比,结果显示:LSTM-GCN模型相较于LSTM模型均方根误差(RMSE)、平均绝对误差(MAE)分别降低了11.68%、7.34%;相较于GCN模型RMSE、MAE分别降低了40.22%、36.37%;相较于GTWR模型RMSE、MAE分别降低了17.52%、23.69%,表明所提出LSTM-GCN模型在准确率上有所提升。用LSTM-GCN模型预测2021年1—7月PM2.5浓度,结果显示预测效果较好。 相似文献
12.
根据齐齐哈尔大学监测点2014年3—5月PM2?5质量浓度及其对应的每小时的气象因素、气体污染物浓度,建立基于t分布受控遗传算法的BP神经网络模型( BPM?TCG),对PM2?5质量浓度进行模拟预测。并将其与BP神经网络模型、遗传算法优化BP神经网络模型( BP?GA)进行对比分析。3种模型预测结果表明:BPM?TCG模型预测精度最高,泛化能力最好。 BPM?TCG模型对PM2?5质量浓度的准确预测为预防和控制PM2?5提供依据。 相似文献
13.
了解不同气象条件下城市人行道细颗粒物(PM2.5)时空分布特征对于指导城市环境评价及街道空间规划布局具有重要意义。选取长沙市车流量及人流量较大的4条道路旁0、5、10 m处的人行道,在冬季晴天、阴天和大风天开展PM2.5质量浓度、风速、温度及相对湿度监测,探讨PM2.5分布特征与气象因子的关系。结果表明:冬季晴天、阴天及大风天的人行道PM2.5质量浓度变化呈现双峰双谷特征,峰值均出现在06:00—08:00,其次为18:00—20:00,谷值出现在14:00—16:00及22:00—24:00;距离机动车道10m处的人行道PM2.5含量低于机动车道旁(即距离机动车道0 m)的人行道PM2.5含量,这种差异在大风天气下更为显著;人行道PM2.5质量浓度与温度、风速呈显著负相关关系,与空气湿度呈显著正相关关系,低温不利于PM2.5扩散,但在大风天温度对PM2.5的影响极小,风对PM2.5含量的变化影响极大,在远离机动车道的人行道更为显著,而高湿度天气有利于PM2.5的凝结。低温、高湿天气下06:00—08:00、18:00—20:00人行道PM2.5质量浓度较高,大风对PM2.5质量浓度具有一定削减作用,早晚高峰减少人行道洒水以降低空气湿度,有利于PM2.5质量浓度的降低,减少PM2.5积累。 相似文献
14.
为了解兰州市大气PM2.5中金属元素的污染水平和分布,于2013年冬季和春季在兰州市区4个在线监测点进行PM2.5样品采集,利用ICP-MS分析金属元素浓度。结果表明,Pb、B元素含量高于200 ng/m3,V、Fe元素含量在100~200 ng/m3,其余元素含量低于100 ng/m3,其中Pb含量最高,平均含量达到373.8 ng/m3.各监测点元素含量在冬季和春季各有不同,整体上是冬季高于春季。金属元素在兰州市区的空间分布与兰州市工业排放和气象因素有关,工业排放为主导因素。 相似文献