首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The endemic South American mammals Meridiolestida, considered previously as dryolestoid cladotherians, are found to be non-cladotherian trechnotherians related to spalacotheriid symmetrodontans based on a parsimony analysis of 137 morphological characters among 44 taxa. Spalacotheriidae is the sister taxon to Meridiolestida, and the latter clade is derived from a primitive spalacolestine that migrated to South America from North America at the beginning of the Late Cretaceous. Meridiolestida survived until the early Paleocene (Peligrotherium) and early Miocene (Necrolestes) in South America, and their extinction is probably linked to the increasing competition with metatherian and eutherian tribosphenic mammals. The clade Meridiolestida plus Spalacotheriidae is the sister taxon to Cladotheria and forms a new clade Alethinotheria. Alethinotheria and its sister taxon Zhangheotheria, new clade (Zhangheotheriidae plus basal taxa), comprise Trechnotheria. Cladotheria is divided into Zatheria (plus stem taxa, including Amphitherium) and Dryolestida, including Dryolestidae and a paraphyletic array of basal dryolestidans (formerly classified as “Paurodontidae”). The South American Vincelestes and Groebertherium are basal dryolestidans.  相似文献   

2.
Mesozoic deposits of the former Gondwanaland are depauperate in early mammals, in general, and multituberculate mammals, in particular. Until now, the oldest multituberculate mammals known from the Gondwanan continents come from the Early Cretaceous of Morocco, NW Africa. Here, we report the presence of a new multituberculate mammal, Indobaatar zofiae gen. et sp. nov., from the Lower/Middle Jurassic Kota Formation, Pranhita-Godavari valley in peninsular India. This is the first record of a multituberculate from the Mesozoic rocks of India and possibly predates the oldest known multituberculates from Gondwanan continents. The new specimen, representing an upper premolar (P4), compares well with the upper premolar morphology of Eobaatariinae multituberculates known from the Early Cretaceous of Mongolia, China, England, and Spain. Together with the recent findings of cimolodontan multituberculates from the Early Cretaceous of Australia and Late Cretaceous of South America, the new discovery indicates a wide temporal and spatial distribution for multituberculate mammals in the former Gondwanaland.  相似文献   

3.
Heterodontosauridae is a morphologically divergent group of dinosaurs that has recently been interpreted as one of the most basal clades of Ornithischia. Heterodontosaurid remains were previously known from the Early Jurassic of southern Africa, but recent discoveries and studies have significantly increased the geographical and temporal range for this clade. Here, we report a new ornithischian dinosaur from the Middle Jurassic Ca?adón Asfalto Formation in central Patagonia, Argentina. This new taxon, Manidens condorensis gen. et sp. nov., includes well-preserved craniomandibular and postcranial remains and represents the only diagnostic ornithischian specimen yet discovered in the Jurassic of South America so far. Derived features of its anatomy indicate that Manidens belongs to Heterodontosauridae, as the sister taxon of Heterodontosaurus and other South African heterodontosaurids. The presence of posterior dentary teeth with high crowns but lacking extensive wear facets in Manidens suggests that this form represents an intermediate stage in the development of the remarkable adaptations to herbivory described for Heterodontosaurus. The dentition of Manidens condorensis also has autapomorphies, such as asymmetrically arranged denticles in posterior teeth and a mesially projected denticle in the posteriormost teeth. At an estimated total length of 60?C75?cm, Manidens furthermore confirms the small size of basal heterodontosaurids.  相似文献   

4.
Spinosaurids are among the largest and most specialized carnivorous dinosaurs. The morphology of their crocodile-like skull, stomach contents, and oxygen isotopic composition of the bones suggest they had a predominantly piscivorous diet. Even if close relationships between spinosaurids and Middle Jurassic megalosaurs seem well established, very little is known about the transition from a generalized large basal tetanuran to the specialized morphology of spinosaurids. Spinosaurid remains were previously known from the Early to Late Cretaceous of North Africa, Europe, and South America. Here, we report the discovery of a new spinosaurid theropod from the late Early Cretaceous Savannakhet Basin in Laos, which is distinguished by an autapomorphic sinusoidal dorsosacral sail. This new taxon, Ichthyovenator laosensis gen. et sp. nov., includes well-preserved and partially articulated postcranial remains. Although possible spinosaurid teeth have been reported from various Early Cretaceous localities in Asia, the new taxon I. laosensis is the first definite record of Spinosauridae from Asia. Cladistic analysis identifies Ichthyovenator as a member of the sub-clade Baryonychinae and suggests a widespread distribution of this clade at the end of the Early Cretaceous. Chilantaisaurus tashouikensis from the Cretaceous of Inner Mongolia, and an ungual phalanx from the Upper Jurassic of Colorado are also referred to spinosaurids, extending both the stratigraphical and geographical range of this clade.  相似文献   

5.
Genuine fossils with exquisitely preserved plumage from the Late Jurassic and Early Cretaceous of northeastern China have recently revealed that bird-like theropod dinosaurs had long pennaceous feathers along their hindlimbs and may have used their four wings to glide or fly. Thus, it has been postulated that early bird flight might initially have involved four wings (Xu et al. Nature 421:335–340, 2003; Hu et al. Nature 461:640–643, 2009; Han et al. Nat Commun 5:4382, 2014). Here, we describe Serikornis sungei gen. et sp. nov., a new feathered theropod from the Tiaojishan Fm (Late Jurassic) of Liaoning Province, China. Its skeletal morphology suggests a ground-dwelling ecology with no flying adaptations. Our phylogenetic analysis places Serikornis, together with other Late Jurassic paravians from China, as a basal paravians, outside the Eumaniraptora clade. The tail of Serikornis is covered proximally by filaments and distally by slender rectrices. Thin symmetrical remiges lacking barbules are attached along its forelimbs and elongate hindlimb feathers extend up to its toes, suggesting that hindlimb remiges evolved in ground-dwelling maniraptorans before being co-opted to an arboreal lifestyle or flight.  相似文献   

6.
Ferganodon narynensis gen. et sp. nov. is represented by a lower molariform tooth from the Middle Jurassic (Callovian) Balabansai Svita in Kyrgyzstan. The new genus is allied with Klamelia zhaopengi Chow and Rich 1984 from the Middle Jurassic Shishugou Formation in Xinjiang, northwest China to the new family Klameliidae based on parallelogram-shaped lower molariforms, imbricating rather than interlocking of cusps e-d-f, by a peculiar distolabial cingulid cusp, and by vertical folding of the enamel on the labial crown side. The new family Klameliidae fam. nov. is most similar to Gobiconodontidae by the structure of the molariform teeth and represents a previously unrecognized radiation of eutriconodontan mammals possibly endemic to Central Asia.  相似文献   

7.
Pliocene baleen whale assemblages are characterized by a mix of early records of extant mysticetes, extinct genera within modern families, and late surviving members of the extinct family Cetotheriidae. Although Pleistocene baleen whales are poorly known, thus far they include only fossils of extant genera, indicating Late Pliocene extinctions of numerous mysticetes alongside other marine mammals. Here a new fossil of the Late Neogene cetotheriid mysticete Herpetocetus is reported from the Lower to Middle Pleistocene Falor Formation of Northern California. This find demonstrates that at least one archaic mysticete survived well into the Quaternary Period, indicating a recent loss of a unique niche and a more complex pattern of Plio–Pleistocene faunal overturn for marine mammals than has been previously acknowledged. This discovery also lends indirect support to the hypothesis that the pygmy right whale (Caperea marginata) is an extant cetotheriid, as it documents another cetotheriid nearly surviving to modern times.  相似文献   

8.
Sauropod dinosaur bones are common in Mesozoic terrestrial sediments, but sauropod skulls are exceedingly rare—cranial materials are known for less than one third of sauropod genera and even fewer are known from complete skulls. Here we describe the first complete sauropod skull from the Cretaceous of the Americas, Abydosaurus mcintoshi, n. gen., n. sp., known from 104.46 ± 0.95 Ma (megannum) sediments from Dinosaur National Monument, USA. Abydosaurus shares close ancestry with Brachiosaurus, which appeared in the fossil record ca. 45 million years earlier and had substantially broader teeth. A survey of tooth shape in sauropodomorphs demonstrates that sauropods evolved broad crowns during the Early Jurassic but did not evolve narrow crowns until the Late Jurassic, when they occupied their greatest range of crown breadths. During the Cretaceous, brachiosaurids and other lineages independently underwent a marked diminution in tooth breadth, and before the latest Cretaceous broad-crowned sauropods were extinct on all continental landmasses. Differential survival and diversification of narrow-crowned sauropods in the Late Cretaceous appears to be a directed trend that was not correlated with changes in plant diversity or abundance, but may signal a shift towards elevated tooth replacement rates and high-wear dentition. Sauropods lacked many of the complex herbivorous adaptations present within contemporaneous ornithischian herbivores, such as beaks, cheeks, kinesis, and heterodonty. The spartan design of sauropod skulls may be related to their remarkably small size—sauropod skulls account for only 1/200th of total body volume compared to 1/30th body volume in ornithopod dinosaurs.  相似文献   

9.
All xenarthrans known to date are characterized by having permanent teeth that are both high crowned and open rooted, i.e., euhypsodont, and with a type of hypsodonty different from that of the rest of Placentalia: dentine hypsodonty. Also, most xenarthrans lack enamel; however, its presence has been reported in the fossil armadillo Utaetus buccatus and in living Dasypus. Considering the divergence of Xenarthra from other eutherians that possessed enameled teeth, the absence of enamel is a derived character. Diverse specializations are known in the dentition of xenarthrans, but the primitive pattern of their teeth and dentitions is still unknown. Here, we describe the mandible and teeth of a fossil armadillo, Astegotherium dichotomus (Astegotheriini, Dasypodidae), from the early Middle Eocene of Argentine Patagonia, with teeth showing both true enamel and closed roots. It is the oldest xenarthran with mandibular remains exhibiting protohypsodonty and is therefore likely representative of ancestral cingulates and xenarthrans generally. Astegotherium supports a recent hypothesis based on molecular data that enamel loss occurred independently not only within xenarthrans but also within dasypodid armadillos.  相似文献   

10.
New materials of the ornithischian dinosaur Manidens condorensis highlight a strong heterodonty between the upper and lower dentitions and reveal a novel occlusion type previously unreported in herbivorous dinosaurs. The diamond-shaped maxillary teeth have prominent cingular entolophs in a V- to Z-shaped configuration that are absent in dentary teeth. These cingular entolophs bear denticles and serrations with vertical wear that is coplanar with the apical wear facets, supporting their involvement in chewing. The separated apical and basal wear in dentary teeth is consistent with the apical and cingular wear in maxillary teeth, indicating an alternate occlusion, an orthal jaw motion, and shearing interactions between marginal and cingular edges in a double occlusion. Measurements of the length and wear area along the marginal and cingular edges indicate that the latter are functionally equivalent to adding eight teeth to a maxillary toothrow of ten, almost doubling the lengths of cutting edges and the degree of intraoral processing, while maintaining a plesiomorphic skull anatomy, an adaptation to herbivory unique in Ornithischia.  相似文献   

11.
Sharks are known to have been ammonoid predators, as indicated by analysis of bite marks or coprolite contents. However, body fossil associations attesting to this predator–prey relationship have never been described so far. Here, I report a unique finding from the Late Jurassic of western France: a complete specimen of the Kimmeridgian ammonite Orthaspidoceras bearing one tooth of the hybodont shark Planohybodus. Some possible tooth puncture marks are also observed. This is the first direct evidence of such a trophic link between these two major Mesozoic groups, allowing an accurate identification of both organisms. Although Planohybodus displays a tearing-type dentition generally assumed to have been especially adapted for large unshelled prey, our discovery clearly shows that this shark was also able to attack robust ammonites such as aspidoceratids. The direct evidence presented here provides new insights into the Mesozoic marine ecosystem food webs.  相似文献   

12.
The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.  相似文献   

13.
Recent histological studies have revealed a diversity of dental features in Permo-Carboniferous tetrapods. Here, we report on the occurrence of plicidentine (infolded dentine around the base of the tooth root) in Sphenacodontia, the first such documentation in Synapsida, the clade that includes mammals. Five taxa were examined histologically, Ianthodon schultzei, Sphenacodon ferocior, Dimetrodon limbatus, Dimetrodon grandis, and Secodontosaurus obtusidens. The tooth roots of Ianthodon possess multiple folds, which is generally viewed as the primitive condition for amniotes. Sphenacodon and D. limbatus have distinctive “four-leaf clover”-shaped roots in cross section, whereas Secodontosaurus has an elongate square shape with only subtle folding. The most derived and largest taxon examined in this study, D. grandis, has rounded roots in cross section and therefore no plicidentine. This pattern of a loss of plicidentine in sphenacodontids supports previous functional hypotheses of plicidentine, where teeth with shallow roots require folds to increase the area of attachment to the tooth-bearing element, whereas teeth with long roots do not. This pattern may also reflect differences in diet between co-occurring sphenacodontids as well as changes in feeding niche through time, specifically in the apex predator Dimetrodon.  相似文献   

14.
Small terrestrial non-eusuchian mesoeucrocodylians are common components of Cretaceous assemblages of Gondwanan provinces with notosuchians and araripesuchids as flagship taxa in South America, Africa and Madagascar, well into the Late Cretaceous. On the other hand, these are exceedingly rare in Laurasian landmasses during the Late Cretaceous. Small terrestrial mesoeucrocodylians from Europe were often referred to the genus Theriosuchus, a taxon with stratigraphic range extending from the Late Jurassic to the late Early Cretaceous. Theriosuchus is abundantly reported from various European localities, although Asiatic and possibly North American members are also known. It has often been closely associated with the first modern crocodilians, members of the Eusuchia, because of the presence of procoelous vertebrae, a widespread key character diagnosing the Eusuchia. Nevertheless, the relationships of Theriosuchus have not been explored in detail although one species, Theriosuchus pusillus, has been extensively described and referred in numerous works. Here, we describe a new basal mesoeucrocodylian, Theriosuchus sympiestodon sp. nov. from the Maastrichtian of the Haţeg Basin, Romania, suggesting a large temporal gap (about 58 myr) in the fossil record of the genus. Inclusion of the new taxon, along with Theriosuchus guimarotae, in a phylogenetic analysis confirms its referral to the genus Theriosuchus, within a monophyletic atoposaurid clade. Although phylogenetic resolution within this clade is still poor, the new taxon appears, on morphological grounds, to be most closely related to T. pusillus. The relationships of Atoposauridae within Mesoeucrocodylia and especially to Neosuchia are discussed in light of the results of the present contribution as well as from recent work. Our results raise the possibility that Atoposauridae might not be regarded as a derived neosuchian clade anymore, although further investigation of the neosuchian interrelationships is needed. Reports of isolated teeth referable to a closely related taxon from the Upper Cretaceous of Romania and France, together with the presence of Doratodon and Ischyrochampsa, indicate a previously unsuspected diverse assemblage of non-eusuchian mesoeucrocodylians in the Late Cretaceous European archipelago.  相似文献   

15.
Facies analysis, fossil dating, and the study of the metamorphism in the Late Triassic to Early Cretaceous sedimentary successions in the central part of the Northern Calcareous Alps allow to reconstruct the tectonic evolution in the area between the South Penninic Ocean in the northwest and the Tethys Ocean with the Hallstatt Zone in the southeast. The Triassic as well as the Early and Middle Jurassic sediments were deposited in a rifted, transtensive continental margin setting. Around the Middle/Late Jurassic boundary two trenches in front of advancing nappes formed in sequence in the central part of the Northern Calcareous Alps. The southern trench (Late Callovian to Early Oxfordian) accumulated a thick succession of gravitatively redeposited sediments derived from the sedimentary sequences of the accreted Triassic–Liassic Hallstatt Zone deposited on the outer shelf and the margin of the Late Triassic carbonate platform. During a previous stage these sediments derived from sequences deposited on the more distal shelf (Salzberg facies zone of Hallstatt unit, Meliaticum), and in a later stage from more proximal parts (Zlambach facies zone of Hallstatt unit, Late Triassic reef belt). Low temperature–high pressure metamorphism of some Hallstatt limestones before redeposition is explained by the closure of parts of the Tethys Ocean in Middle to Late Jurassic times and associated subduction. In the northern trench (Late Oxfordian to Kimmeridgian) several hundred meters of sediment accumulated including redeposited material from a nearby topographic rise. This rise is interpreted as an advancing nappe front as a result of the subduction process. The sedimentary sealing by Tithonian sediments, documented by uniform deep-water sedimentation (Oberalm Formation), gives an upper time constraint for the tectonic events. In contrast to current models, which propose an extensional regime for the central and eastern Northern Calcareous Alps in the Late Jurassic, we propose a geodynamic model with a compressional regime related to the Kimmerian orogeny.  相似文献   

16.
Umami is one of basic tastes that humans and other vertebrates can perceive. This taste is elicited by L-amino acids and thus has a special role of detecting nutritious, protein-rich food. The T1R1 + T1R3 heterodimer acts as the principal umami receptor. The T1R1 protein is encoded by the Tas1r1 gene. We report multiple inactivating (pseudogenizing) mutations in exon 3 of this gene from four phocid and two otariid species (Pinnipedia). Jiang et al. (Proc Natl Acad Sci U S A 109:4956–4961, 2012) reported two inactivating mutations in exons 2 and 6 of this gene from another otariid species. These findings suggest lost or greatly reduced umami sensory capabilities in these species. The widespread occurrence of a nonfunctional Tas1r1 pseudogene in this clade of strictly carnivorous mammals is surprising. We hypothesize that factors underlying the pseudogenization of Tas1r1 in pinnipeds may be driven by the marine environment to which these carnivorans (Carnivora) have adapted and may include: the evolutionary change in diet from tetrapod prey to fish and cephalopods (because cephalopods and living fish contain little or no synergistic inosine 5′-monophosphate that greatly enhances umami taste), the feeding behavior of swallowing food whole without mastication (because the T1R1 + T1R3 receptor is distributed on the tongue and palate), and the saltiness of sea water (because a high concentration of sodium chloride masks umami taste).  相似文献   

17.

Phylogenetic relationships near the origin of extant crocodylians are weakly supported, and this lack of resolution makes for poor estimates of taxonomic and morphological diversity. Previously known taxa are found throughout the Cretaceous in Laurasia and at a few sites from Brazil, Australia, and northern Africa. Here, we report Batrachomimus pastosbonensis gen. et sp. nov. from the Late Jurassic of northeastern Brazil, which is deeply nested within Neosuchia and associated to the Cretaceous Asian paralligatorids. The new taxon predates all other members of Paralligatoridae and its immediate sister group (including Eusuchia) by 30 million years. A nearly complete skull, osteoderms, and limb bones were recovered, and autapomorphies of B. pastosbonensis include a scalloped lateral margin of the rostrum in dorsal view, unsculpted alveolar margin at the caudalmost portion of the maxilla, blunt lateral prongs on the jugal at the base of the postorbital bar, hourglass shaped choanae, and pterygoid choanal septum extended between the palatal shelves of the palatines. The crocodyloid-like skull proportions and the slender, conical teeth suggest an amphibious and piscivorous life history to this 1 m long animal.

  相似文献   

18.
Venom delivery systems occur in a wide range of extant and fossil vertebrates and are primarily based on oral adaptations. Teeth range from unmodified (Komodo dragons) to highly specialized fangs similar to hypodermic needles (protero- and solenoglyphous snakes). Developmental biologists have documented evidence for an infolding pathway of fang evolution, where the groove folds over to create the more derived condition. However, the oldest known members of venomous clades retain the same condition as their extant relatives, resulting in no fossil evidence for the transition. Based on a comparison of previously known specimens with newly discovered teeth from North Carolina, we describe a new species of the Late Triassic archosauriform Uatchitodon and provide detailed analyses that provide evidence for both venom conduction and document a complete structural series from shallow grooves to fully enclosed tubular canals. While known only from teeth, Uatchitodon is highly diagnostic in possessing compound serrations and for having two venom canals on each tooth in the dentition. Further, although not a snake, Uatchitodon sheds light on the evolutionary trajectory of venom delivery systems in amniotes and provide solid evidence for venom conduction in archosaur-line diapsids.  相似文献   

19.
A new African species of hystricognathous rodent, Gaudeamus lavocati sp. nov., is described herein from the early Oligocene deposits of Zallah locality (Sirt basin, Central Libya). The dental morphology of this species is very close to that of some earliest South American caviomorphs. It allows a reinterpretation of molar crest homologies among earliest caviomorphs, pentalophodonty being confirmed as the plesiomorphic molar condition in Caviomorpha. This morphological resemblance argues for close affinities between Gaudeamus and earliest South American hystricognaths. Cladistic analysis supports Gaudeamus lavocati sp. nov. as the first known African representative of Caviomorpha, implying that its ancestors were part of the African phiomyid group that crossed the South Atlantic by a direct immigration route. Alternatively, the series of derived dental features of Gaudeamus could also be interpreted as evolutionary synchronous convergences of an African hystricognath lineage towards the specialized pattern of some caviomorphs. However, the high level of similarities concerning teeth morphology and enamel microstructure and the similar age of fossiliferous strata on both continents make this interpretation less probable. The phylogenetic position of this taxon is of considerable importance because it represents an enigmatic component of the phiomorph–caviomorph radiation in Africa and appears as a new clue toward the understanding of caviomorph origins.  相似文献   

20.
Sex differences in the foraging ecology of monomorphic species are poorly understood, due to problems with gender identification in field studies. In the current study, we used experimental conditions to investigate the food preferences of the white stork Ciconia ciconia, an opportunistic species in terms of food, but characterised by a low level of sexual dimorphism. During a 10-day experiment, 29 individuals (20 females and 9 males) were studied by means of a ‘cafeteria test’ in which the storks’ diet consisted of mammals, birds, fish, amphibians, insects and earthworms. The storks preferred food characterised by high calorific and protein values such as mammals, birds and fish. Sexes differed strongly in their preferences; males preferred mammals, whereas females preferred birds. Moreover, females consumed insects and earthworms less often than males. Interestingly, males spent significantly less time foraging than females. We have demonstrated that the white stork exhibits clear sexual differences in food preferences which are mostly attributable to differences in parental duties, physiology and anatomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号