首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
From 1998 to 2008, 68 adult female loggerhead sea turtles (Caretta caretta) were instrumented with platform transmitter terminals at nesting beaches in Georgia, North Carolina (NC) and South Carolina (SC) on the East Coast of the United States of America (30°48′N, 81°28′W to 33°51′N, 77°59′W). The majority of post-nesting loggerheads (N = 42, 62 %) migrated to foraging habitats in the Mid-Atlantic Bight during May–October, with a subsequent migration occurring during November–March to foraging habitats south of Cape Hatteras, NC. Nine (13 %) loggerheads initially foraged in the near-shore, coastal areas of the South Atlantic Bight, but moved to offshore habitats—closer to the Gulf Stream—during November–March, while fourteen (21 %) loggerheads remained in foraging areas along the mid-continental shelf off of the eastern coast of Florida and/or continued southward to Florida Bay and the Bahamas. The present study delineates important, post-nesting foraging habitats and migration corridors where loggerheads may interact with commercial fisheries—providing managers opportunities to develop and implement optimally effective conservation actions for the recovery of this threatened species.  相似文献   

2.
Skeletochronological analysis of Kemp’s ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtle humeri and scleral ossicles was conducted to (1) describe the characteristics of scleral ossicles in these species, (2) determine whether the scleral ossicles contain annually deposited skeletal growth marks and (3) evaluate the potential for skeletochronological analysis of ossicles to obtain age data for size classes and species of sea turtles whose humeri exhibit prohibitive amounts of growth mark resorption. Humeri, entire eyes, and/or individual scleral ossicles were collected from stranded, dead sea turtles that were found along the coasts of Florida, North Carolina, Virginia, and Texas, USA. Samples were taken from a total of 77 neritic, juvenile Kemp’s ridleys ranging from 21.1 to 56.8 cm straightline carapace length (SCL), as well as two Kemp’s ridley hatchlings. For loggerheads, samples were obtained from 65 neritic juvenile and adult turtles ranging from 44.7 to 103.6 cm SCL and ten hatchlings. Examination of the ossicles revealed the presence of marks similar in appearance to those found in humeri. The number of marks in the ossicles and humeri of individual juvenile Kemp’s ridleys for which both structures were collected (n = 55) was equivalent, strongly indicating that the marks are annual. However, in large juvenile and adult loggerhead turtles (n = 65), some significant resorption of early growth marks was observed, suggesting that although ossicles might be useful for skeletochronological analysis of small juveniles, they may not provide a reasonable alternative to humeri for obtaining age estimates for older loggerhead sea turtles.  相似文献   

3.
There are size-related differences in the use of feeding habitats (planktonic or benthic; oceanic or neritic) by adult female loggerhead sea turtles (Caretta caretta) within Japanese populations. We thus hypothesized that the differences may be reflected in their remigration and growth patterns, and investigated the relationships between body size and remigration intervals, growth rates, and remigration percentages, for female loggerheads nesting on a Japanese beach between 1991 and 2001. Although remigration intervals, growth rates, and remigration percentages were not significantly different among females, there were trends for longer remigration intervals and lower remigration percentages in smaller females. All females grew little. Considering these results along with previous findings, we speculated on the life-history strategy of female Japanese loggerheads.Communicated by T. Ikeda, Hakodate  相似文献   

4.
Feeding ecology of juvenile green turtles (Chelonia mydas) was studied from 2008 to 2011 at Samborombón Bay (35°30′–36°30′S, Argentina), combining data on digestive tract examination and stable isotope analysis through a Bayesian mixing model. We found that animal matter, in particular gelatinous plankton, was consumed in large proportions compared to herbivorous food items such as terrestrial plants and macroalgae. This diet is facilitated by the high abundance of gelatinous plankton in the region, thus confirming the adaptive foraging behaviour of the juveniles according to prey abundance in the SW Atlantic. To our knowledge, this is the first study to employ this combination of techniques and to conclusively demonstrate that animal matter, in particular gelatinous plankton, is important in the diet of the neritic green sea turtles.  相似文献   

5.
Young green turtles (Chelonia mydas) spend their early lives as oceanic omnivores with a prevalence of animal prey. Once they settle into neritic habitats (recruitment), they are thought to shift rapidly to an herbivorous diet, as revealed by studies in the Greater Caribbean. However, the precise timing of the ontogenic dietary shift and the actual relevance of animal prey in the diet of neritic green turtles are poorly known elsewhere. Stable isotopes of carbon, sulfur and nitrogen in the carapace scutes of 19 green turtles from Mauritania (NW Africa), ranging from 26 to 102 cm in curved carapace length (CCLmin), were analyzed to test the hypothesis of a rapid dietary shift after recruitment. Although the length of residence time in neritic habitats increased with turtle length, as revealed by a significant correlation between turtle length and the δ13C and the δ34S of the scutes, comparison of the δ15N of the innermost and outermost layers of carapace scutes demonstrated that consumption of macrophytes did not always start immediately after recruitment, and turtles often resumed an animal-based diet after starting to graze on seagrasses. As a consequence, seagrass consumption did not increase gradually with turtle size and animal prey largely contributed to the diet of turtles within the range 29–59 cm CCLmin (76–99% of assimilated nutrients). Seagrass consumption by turtles larger than 59 cm CCLmin was higher, but they still relied largely on animal prey (53–76% of assimilated nutrients). Thus, throughout most of their neritic juvenile life, green turtles from NW Africa would be better classified as omnivores rather than herbivores. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Sea turtles migrate between feeding and nesting areas that are often geographically separated by hundreds or thousands of kilometers. Observations of their aggregations at sea and at nesting beaches have led to the hypothesis that sea turtles migrate in socially structured groups. While this migratory strategy is common to many marine vertebrates, socially facilitated behavior is not well documented in testudines. In 1990 and 1991, we attached satellite transmitters to olive ridleys (Lepidochelys olivacea Eschscholtz) found ovipositing together during a mass nesting at Nancite Beach, Costa Rica, to determine whether they migrate independently or in groups after they leave the nesting beach. Results showed that the turtles were not spatially associated during the internesting period, were capable of re-establishing themselves as a group during a subsequent nesting emergence, and were not spatially associated during their postnesting migrations to oceanic feeding areas. We suggested that what appear to be socially structured groups of L. olivacea are in fact individual turtles simultaneously using the same habitat.  相似文献   

7.
To investigate site fidelity and homing behavior in juvenile loggerheads ( Caretta caretta, L.), a mark-recapture study spanning four years (1998–2001) was conducted in Core Sound, N.C., USA. Each year of the study, approximately half of the turtles captured were tagged and released near the capture sites ( n=207), while the remaining turtles were displaced 15–20 km and released ( n=198). Loggerheads in both groups were recaptured in equal proportions near the original capture sites and many individuals were also recaptured in subsequent years. These data imply that juvenile loggerheads often returned to their capture sites following displacement, because if turtles dispersed randomly or remained near their release sites, then fewer displaced turtles should have been caught again. Moreover, because turtles migrate out of North Carolina sounds each winter, turtles recaptured at the same locations in different years evidently returned to specific sites following long migrations. To further investigate homing behavior, a small number of displaced turtles ( n=28) were tracked using radio telemetry following their release. Although transmitters detached from most turtles within a few days, analyses of initial headings showed strong orientation in the direction of the capture site. In addition, four turtles successfully tracked for longer periods of time all returned rapidly to the vicinity of the capture location and remained in the area. Taken together, the results of this study indicate that juvenile loggerheads exhibit fidelity to specific areas during summer months and possess the navigational abilities to home to these areas following forced displacements and long-distance migrations.  相似文献   

8.
We used satellite telemetry to study behavior at foraging sites of 40 adult female loggerhead sea turtles (Caretta caretta) from three Florida (USA) rookeries. Foraging sites were located in four countries (USA, Mexico, the Bahamas, and Cuba). We were able to determine home range for 32 of the loggerheads. One turtle moved through several temporary residence areas, but the rest had a primary residence area in which they spent all or most of their time (usually >11 months per year). Twenty-four had a primary residence area that was <500 km2 (mean = 191). Seven had a primary residence area that was ≥500 km2 (range = 573–1,907). Primary residence areas were mostly restricted to depths <100 m. Loggerheads appeared to favor areas with larger-grained sediment (gravel and rock) over areas with smaller-grained sediment (mud). Short-term departures from primary residence areas were either looping excursions, typically involving 1–2 weeks of continuous travel, or movement to a secondary residence area where turtles spent 25–45 days before returning to their primary residence area. Ten turtles had a secondary residence area, and six used it as an overwintering site. For those six turtles, the primary residence area was in shallow water (<17 m) in the northern half of the Gulf of Mexico (GOM), and overwintering sites were farther offshore or farther south. We documented long winter dive times (>4 h) for the first time in the GOM. Characterizing behaviors at foraging sites helps inform and assess loggerhead recovery efforts.  相似文献   

9.
Seventeen immature green turtles Chelonia mydas were tracked concurrently by automated ultrasonic receivers at a coral reef off North-Eastern Australia (September–December 2010, 16.4°S, 145.6°E). The majority (n = 11) were tracked for the entire 100-day study, the remainder for 23–85 days. Detection data aggregated at 30-min intervals produced median 6.5–35 daily locations for individual turtles. Home range areas (95 % utilisation distribution) were ≤1 km2, $ {\bar{\text{x}}} $  ± SD = 0.74 km2 ± 0.159. To the best of our knowledge, these are the first home range estimates for C. mydas foraging at offshore tropical reefs. The findings are important for conservation in revealing near-continuous presence of the same individuals within a small geographic area. Time between detections was very short (median <3 min) demonstrating passive ultrasonic technology can track multiple turtles in a foraging environment with higher temporal resolution than typically achieved by satellite tracking.  相似文献   

10.
Few data are available on the movements and behavior of immature Atlantic loggerhead sea turtles (Caretta caretta) from their seasonal neritic foraging grounds within the western north Atlantic. These waters provide developmental habitat for loggerheads originating from several western Atlantic nesting stocks. We examined the long-term movements of 23 immature loggerheads (16 wild-caught and seven headstart turtles) characterizing their seasonal distribution, habitat use, site fidelity, and the oceanographic conditions encountered during their migrations. We identified two movement strategies: (1) a seasonal shelf-constrained north–south migratory pattern; and (2) a year-round oceanic dispersal strategy where turtles travel in the Gulf Stream to the North Atlantic and their northern dispersal is limited by the 10–15°C isotherm. When sea surface temperatures dropped below 20°C, neritic turtles began a migration south of Cape Hatteras, North Carolina (USA) where they established fidelity to the waters between North Carolina’s Outer Banks and the western edge of the Gulf Stream along outer continental shelf. Two turtles traveled as far south as Florida. Several turtles returned to their seasonal foraging grounds during subsequent summers. Northern movements were associated with both increased sea surface temperature (>21°C) and increased primary productivity. Our results indicate strong seasonal and interannual philopatry to the waters of Virginia (summer foraging habitat) and North Carolina (winter habitat). We suggest that the waters of Virginia and North Carolina provide important seasonal habitat and serve as a seasonal migratory pathway for immature loggerhead sea turtles. North Carolina’s Cape Hatteras acts as a seasonal “migratory bottleneck” for this species; special management consideration should be given to this region. Six turtles spent time farther from the continental shelf. Three entered the Gulf Stream near Cape Hatteras, traveling in the current to the northwest Atlantic. Two of these turtles remained within an oceanic habitat from 1 to 3 years and were associated with mesoscale features and frontal systems. The ability of large benthic subadults to resume an oceanic lifestyle for extended periods indicates plasticity in habitat use and migratory strategies. Therefore, traditional life history models for loggerhead sea turtles should be reevaluated.  相似文献   

11.
In marine turtles, the sex of an individual is determined by temperatures experienced during embryonic development. Gonad histological observation is still the only reliable way to determine hatchling sex, hampering the study of reproduction and of the demographic consequences of context-dependent sex-ratios, a subject of interest in a warming planet. We investigated whether hatchling remains from predation by Ocypode cursor can be used to estimate sex-ratio trends in a green turtle rookery at Poilão, Guinea-Bissau (10°52′N, 15°43′W). Sex could be readily determined in 77 and 79% of the predated hatchlings in 2008 and 2009, respectively. By comparing hatchlings killed by crabs, hatchlings accidentally dying on the reefs, and live hatchlings, we show that ghost crabs select the smaller prey, but do not select according to hatchling sex, which is explained by the lack of hatchling size dimorphism in this population. The proportion of male hatchlings was 0.45 ± 0.06 and 0.15 ± 0.06 for early and late-season clutches, respectively, these differences most likely being explained by rainfall. Using leftovers from predation by crabs may be a good solution to non-invasively monitor broad trends in sex-ratios of sea turtles.  相似文献   

12.
Grapsoid crabs of the genera Planes and Plagusia are commonly referred to as “rafting crabs” due to their propensity to live on flotsam and pelagic marine animals. Planes minutus and Planes major (=Planes cyaneus) are epibionts of sea turtles. Occurrences of grapsoid crabs in the genera Planes and Plagusia were evaluated on a total of 27 olive ridley sea turtles, Lepidochelys olivacea, from the eastern tropic Pacific (1998–2001) and the Hawaiian Islands (2002) captured in July–December each year. This is the first report of Planes marinus and Plagusia squamosa on sea turtles, and of P. major, P. marinus, and P. squamosa in sympatry on a confined substrate. Stomach content analyses showed P. major and P. marinus consumed a variety of neuston and marine vegetation, with the former consuming considerably more animal material. Epibiotic P. squamosa consumed mostly plant material. The three Planes species had distinctive differences in gastric mill tooth morphology. The versatile mouthparts of P. marinus are described and resemble those of their congeners. Most female P. major and P. marinus collected were ovigerous and present in all survey months.  相似文献   

13.
Satellite transmitters were deployed on ten green turtles (Chelonia mydas) nesting in Rekawa Sanctuary (RS-80.851°E 6.045°N), Sri Lanka, during 2006 and 2007 to determine inter-nesting and migratory behaviours and foraging habitats. Nine turtles subsequently nested at RS and demonstrated two inter-nesting strategies linked to the location of their residence sites. Three turtles used local shallow coastal sites within 60 km of RS during some or all of their inter-nesting periods and then returned to and settled at these sites on completion of their breeding seasons. In contrast, five individuals spent inter-nesting periods proximate to RS and then migrated to and settled at distant (>350 km) shallow coastal residence sites. Another turtle also spent inter-nesting periods proximate to RS and then migrated to a distant oceanic atoll and made forays into oceanic waters for 42 days before transmissions ceased. This behavioural plasticity informs conservation management beyond protection at the nesting beach.  相似文献   

14.
We present the first study conducted in a wide spatio-temporal scale on marine turtles strandings (N = 1,107) over a 12-year period (1999–2010) in Uruguay. Five species were recorded Chelonia mydas (N = 643; 58.1 %), Caretta caretta (N = 329; 29.7 %), Dermochelys coriacea (N = 131; 11.8 %), Eretmochelys imbricata (N = 3; 0.3 %), and Lepidochelys olivacea (N = 1; 0.1 %). The first three species stranded throughout the Uruguayan coast, but differences in distribution patterns were detected among species. Although occurring year round, stranding records show a clear seasonal pattern with variation in monthly distribution among species, but with a peak of records in austral summer. Strandings provide indirect evidence of threats to marine turtles in Uruguayan and surrounding waters, particularly fisheries and marine debris. Our results demonstrate that Uruguayan coastal waters likely serve as a foraging or development area for at least three endangered marine turtle species in temperate waters.  相似文献   

15.
Much is still to be learned about the spatial ecology of foraging marine turtles, especially for juveniles and adult males which have received comparatively little attention. Additionally, there is a paucity of ecological information on growth rates, size and age at maturity, and sex ratios at different life stages; data vital for successful population modelling. Here, we present results of a long-term (2002–2011) study on the movements, residency, growth and sex ratio of loggerhead turtles (Caretta caretta) in Amvrakikos Gulf (39°0′N 21°0′E), Greece, using satellite telemetry (N = 8) and ongoing capture–mark–recapture (CMR; N = 300 individuals). Individuals encountered at sea ranged from large juvenile to adult (46.2–91.5 cm straight carapace length) and demonstrated growth rates within published norms (<2.7 cm yr?1) that slowed with increasing body size. We revealed that an unexpectedly high proportion of animals were male (>44 % of captures above 65 cm straight carapace length), compared to region-wide female-biased hatchling production, indicating sex-biased survival or possible behavioural drivers for likelihood of capture in the region. Satellite tracking confirmed that some turtles establish discrete, protracted periods of residency spanning more than 1 year, whilst others migrated away from the site. These findings are underlined by CMR results with individual capture histories spanning up to 7 years, and only 18 % of individuals being recaptured.  相似文献   

16.
Feeding ecology of green turtles was investigated between January 2005 and April 2008 at Arvoredo Reserve, Brazil (27°17′S, 48°18′W). Data were obtained through the performance of observational sessions, geo-referenced counts, benthic surveys, capture and recapture of individuals, and oesophageal lavages. This protected area was identified as an important green turtle feeding ground, used year-round by juveniles (curved carapace length = 32–83 cm). Turtles fed close to the rocky shores of the area and selected grazing sites commonly at hard-to-reach, near-vertical portions of the rocks. They were less active in cold months, and more abundant at shallow areas of the reef (0–5 m), where their preferred food items occurred. Their diet was dominated by macroalgae species but invertebrates were also present. Their main food item was the red algae Pterocladiella capillacea, which seems to be eaten through periodical cropping of its tips. Observational methods such as the ones applied here could be incorporated to other research programs aiming to understand the relationships between Chelonia mydas feeding populations and their environment.  相似文献   

17.
Many animals, including sea turtles, alter their movements and home range in relation to the particular type and quality of the habitat occupied. When sufficient resources are available, individuals may develop affinities to specific areas for activities, such as foraging and (or) resting. In the case of green sea turtles (Chelonia mydas L.), after a number of years in the open ocean, juveniles recruit to shallow-water developmental habitats where they occupy distinct home ranges as they feed and grow to maturity. Our goal was to study the habitat use and home range movements of juvenile green turtles along a shallow, worm-rock reef tract in Palm Beach, Florida. Six turtles, measuring from 27.9 to 48.1 cm in straight carapace length and from 7.2 to 12.6 kg in mass, were tracked via ultrasonic telemetry from August to November 2003. Upon capture, each turtle’s esophagus was flushed via lavage to determine recently ingested foods. In addition, four turtles were recaptured and fitted with a time-depth recorder to study dive patterns. Home range areas measured with 100% minimum convex polygon and 95% fixed kernel estimators varied from 0.69 to 5.05 km2 (mean=2.38±1.78 km2) and 0.73 to 4.89 km2 (mean=2.09±1.80 km2), respectively. Home ranges and core areas of turtles were largely restricted to the reef tract itself, and showed considerable overlap between food and shelter sites. The mean number of dives during daylight hours (0600–1800 hours) was 84±5.0 dives, while the mean during night hours (1800–0600 hours) was 39±3.0 dives. Dives during the day were shallower (mean=3.20±1.26 m) than dives at night (mean=5.59±0.09 m). All six turtles were found to have a mixed diet of similar macroalgae and sponge fragments. Our results reveal that juvenile green turtles occupy stable home ranges along the nearshore worm-rock reefs of Southeast Florida, during the summer and fall. Determining which habitats are used by green turtles will assist conservation managers in their global effort to protect this endangered species.  相似文献   

18.
To determine whether loggerhead turtles (Caretta caretta) nesting in southeastern USA exhibit polymorphic foraging strategies, we evaluated skin samples for stable isotopes of carbon (δ13C) and nitrogen (δ15N) from 310 loggerheads from four locations on the east coast of Florida and epibionts from 48 loggerheads. We found a dichotomy between a depleted δ13C cluster and an enriched δ13C cluster. Epibionts from oceanic/pelagic or neritic/benthic habitats were largely consistent with this dichotomy. The bimodal distribution of δ13C could reflect a bimodal foraging strategy or—because of the potential for confounding among four gradients of δ13C in marine environments—a polymodal foraging strategy. We integrate our results with results from other stable isotope studies, satellite telemetry, and flipper tags to evaluate potential foraging strategies. Understanding foraging strategies is essential for development of management plans for this endangered species that has suffered a 43% population decline over the last decade.  相似文献   

19.
Sea turtle tagging carried out in Italy in the period 1981–2006 resulted in 125 re-encounters of loggerhead turtles (Caretta caretta) after a mean of 2.5 years, from different marine areas in the Mediterranean. At first finding, turtles ranged 25–83 cm of curved carapace length. Data were analyzed according to size, area, habitat type, season, in order to provide indication of movement patterns. When integrated with other information, results indicate that: (1) a part of turtles in the oceanic stage show a nomad behavior with movements among different oceanic areas; (2) another part show fidelity to an oceanic area; (3) turtles in the neritic stage show fidelity to neritic areas, and once settled to one area, change to other neritic areas is unlikely; (4) nomad oceanic turtles are significantly larger than sedentary ones, and also larger than turtles found in neritic areas; it is hypothesized that these could be Atlantic turtles that eventually leave the Mediterranean; (5) ecological transition from oceanic to neritic habitats occurs at a wide range of sizes, and some turtles may have a very brief oceanic stage; (6) turtles in the oceanic stage are more likely to recruit to neritic areas close to their oceanic areas than to distant ones; (7) part of turtles from some Mediterranean nesting beaches might frequent a relatively limited area range, including both oceanic and neritic areas; (8) in most of the Mediterranean, latitudinal seasonal migrations are unlikely. A general model of movement patterns of loggerhead turtles in the Mediterranean is proposed.  相似文献   

20.
Groundwater used for drinking and cooking was analysed for fluoride (F), and health surveys were conducted in Bodh Gaya, Amas and Bankebazaar blocks of the Gaya district, Bihar, India. Amas and Bankebazaar blocks were F endemic areas with mean F = 2.36 ± 0.23 mg/L (N = 27). Bodh Gaya was considered as control area with mean F = 0.59 ± 0.03 mg/L (N = 11). Health survey showed that more than 50 % of adults and more than 55 % of children had complaints of gastro-intestinal (GI) disturbances in the F endemic areas, while less than 20 % of adults and less than 10 % of children complained of GI problems in the control areas. Haematological analyses were conducted on age- and sex-matched fluorotic subjects (N = 93) of F endemic areas, and non-fluorotic subjects (N = 52) of control area showed lowered haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration in the fluorotic subjects, suggesting the occurrence of anaemia in the fluorotic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号