首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bioremediation of diesel-contaminated soil with composting   总被引:22,自引:0,他引:22  
The major objective of this research was to find the appropriate mix ratio of organic amendments for enhancing diesel oil degradation during contaminated soil composting. Sewage sludge or compost was added as an amendment for supplementing organic matter for composting of contaminated soil. The ratios of contaminated soil to organic amendments were 1:0.1, 1:0.3, 1:0.5, and 1:1 as wet weight basis. Target contaminant of this research was diesel oil, which was spiked at 10,000 mg/kg sample on a dry weight basis. The degradation of diesel oil was significantly enhanced by the addition of these organic amendments relative to straight soil. Degradation rates of total petroleum hydrocarbons (TPH) and n-alkanes were the greatest at the ratio of 1:0.5 of contaminated soil to organic amendments on wet weight basis. Preferential degradation of n-alkanes over TPH was observed regardless of the kind and the amount of organic amendments. The first order degradation constant of n-alkanes was about twice TPH degradation constant. Normal alkanes could be divided in two groups (C10-C15 versus C16-C20) based on the first order kinetic constant. Volatilization loss of TPH was only about 2% of initial TPH. Normal alkanes lost by volatilization were mainly by the compounds of C10 to C16. High correlations (r=0.80-0.86) were found among TPH degradation rate, amount of CO2 evolved, and dehydrogenase activity.  相似文献   

2.
Active microbial degraders of the herbicide prosulfocarb (PSC) were isolated to evaluate their performance in soil with a view to their use for bioremediation. The isolated cultures (a microbial consortium and a Pseudomonas sp. strain) were active when tested in mineral medium with PSC as the only carbon source, but had an adverse effect on the soil indigenous microflora. Biodegradation in the inoculated soils was thus lower than in the uninoculated soil when only the indigenous microflora was present. Further tests showed that the strong affinity of PSC for soil organic matter affected its bioavailability and hence its biodegradation by the inocula. Bioremediation of PSC contaminated soils could thus be undertaken by biostimulation of indigenous microflora.  相似文献   

3.
Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.  相似文献   

4.
Xie XM  Liao M  Yang J  Chai JJ  Fang S  Wang RH 《Chemosphere》2012,88(10):1190-1195
The effect of ryegrass (Lolium perenne L.) root-exudates concentration on pyrene degradation and the microbial ecological characteristics in the pyrene contaminated soil was investigated by simulating a gradually reducing concentration of root exudates with the distance away from root surface in the rhizosphere. Results showed that, after the root-exudates were added 15 d, the pyrene residue in contaminated soil responded nonlinearly in the soils with the same pyrene contaminated level as the added root-exudates concentration increased, which decreased first and increased latter with the increase of the added root-exudates concentration. The lowest pyrene concentration appeared when the root exudates concentration of 32.75 mg kg(-1) total organic carbon (TOC) was added. At the same time, changes of microbial biomass carbon (MBC, C(mic)) and microbial quotient (C(mic)/C(org)) were opposite to the trend of pyrene degradation as the added root-exudates concentration increased. Phospholipid fatty acid (PLFA) analysis revealed that bacteria was the dominating microbial community in pyrene contaminated soil, and the changing trends of pyrene degradation and bacteria number were the same. The changing trend of endoenzyme-dehydrogenase activity was in accordance with that of soil microbe, indicating which could reflect the quantitative characteristic of detoxification to pyrene by soil microbe. The changes in the soils microbial community and corresponding microbial biochemistry characteristics were the ecological mechanism influencing pyrene degradation with increasing concentration of the added root-exudates in the pyrene contaminated soil.  相似文献   

5.
不同处理条件对石油污染土壤植物修复的影响   总被引:4,自引:0,他引:4  
针对石油烃植物修复过程中的主要影响因素,研究了不同植物种类、不同土壤调理剂和菌剂使用等不同条件对土壤中石油烃植物修复效果的影响.结果表明,不同种类的植物修复可使总石油烃的年降解率达到37.8% ~ 73.98%,其中大豆和碱蓬具有较好的修复效果;3种不同土壤调理剂对石油烃污染土壤修复的效果为商业添加剂>牛粪>蛭石;先微生物修复后种植植物的处理要优于单独的微生物修复及微生物、植物修复同步进行的处理.  相似文献   

6.
Bioaugmentation of contaminated sites with microbes that are adapted or genetically engineered for degradation of specific toxic compounds is an area that is currently being explored as a clean-up option. Biomarkers have been developed to track the survival and efficacy of specific bacteria that are used as inocula for bioremediation of contaminated soil. Examples of biomarkers include the luc gene, encoding firefly luciferase and the gfp gene, encoding the green fluorescent protein (GFP). The luc gene was used to tag different bacteria used for bioremediation of gasoline or chlorophenols. The bacteria were monitored on the basis of luciferase activity in cell extracts from soil. The gfp gene was also used to monitor bacteria during degradation of chlorophenol in soil, based on fluorescence of the GFP protein. Other biomarkers can also be used for monitoring of microbial inocula used for bioaugmentation of contaminated sites. The choice of biomarker and monitoring system depends on the particular site, bacterial strain and sensitivity and specificity of detection required.  相似文献   

7.
Labud V  Garcia C  Hernandez T 《Chemosphere》2007,66(10):1863-1871
The aim of this work was to ascertain the effects of different types of hydrocarbon pollution on soil microbial properties and the influence of a soil's characteristics on these effects. For this, toxicity bioassays and microbiological and biochemical parameters were studied in two soils (one sandy and one clayey) contaminated at a loading rate of 5% and 10% with three types of hydrocarbon (diesel oil, gasoline and crude petroleum) differing in their volatilisation potential and toxic substance content. Soils were maintained under controlled conditions (50-70% water holding capacity, and room temperature) for six months and several microbiological and toxicity parameters were monitored 1, 60, 120 and 180 days after contamination. The toxic effects of hydrocarbon contamination were greater in the sandy soil. Hydrocarbons inhibited microbial biomass, the greatest negative effect being observed in the gasoline-polluted sandy soil. In both soils crude petroleum and diesel oil contamination increased microbial respiration, while gasoline had little effect on this parameter, especially in the sandy soil. In general, gasoline had the highest inhibitory effect on the hydrolase activities involved in N, P or C cycles in both soils. All contaminants inhibited hydrolase activities in the sandy soil, while in the clayey soil diesel oil stimulated enzyme activity, particularly at the higher concentration. In both soils, a phytotoxic effect on barley and ryegrass seed germination was observed in the contaminated soils, particularly in those contaminated with diesel or petroleum.  相似文献   

8.
Mesocosm studies using sub-Antarctic soil artificially contaminated with diesel or crude oil were conducted in Kerguelen Archipelago (49 degrees 21' S, 70 degrees 13' E) in an attempt to evaluate the potential of a bioremediation approach in high latitude environments. All mesocosms were sampled on a regular basis over six months period. Soils responded positively to temperature increase from 4 degrees C to 20 degrees C, and to the addition of a commercial oleophilic fertilizer containing N and P. Both factors increased the hydrocarbon-degrading microbial abundance and total petroleum hydrocarbons (TPH) degradation. In general, alkanes were faster degraded than polyaromatic hydrocarbons (PAHs). After 180 days, total alkane losses of both oils reached 77-95% whereas total PAHs never exceeded 80% with optimal conditions at 10 degrees C and fertilizer added. Detailed analysis of naphthalenes, dibenzothiophenes, phenanthrenes, and pyrenes showed a clear decrease of their degradation rate as a function of the size of the PAH molecules. During the experiment there was only a slight decrease in the toxicity, whereas the concentration of TPH decreased significantly during the same time. The most significant reduction in toxicity occurred at 4 degrees C. Therefore, bioremediation of hydrocarbon-contaminated sub-Antarctic soil appears to be feasible, and various engineering strategies, such as heating or amending the soil can accelerate hydrocarbon degradation. However, the residual toxicity of contaminated soil remained drastically high before the desired cleanup is complete and it can represent a limiting factor in the bioremediation of sub-Antarctic soil.  相似文献   

9.
This study investigated the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. Three different bulking agents (cornstalks, sawdust, and spent mushroom substrate) were used to compost kitchen waste under aerobic conditions in 60-L reactors for a 28-d period. A control treatment was also studied using kitchen waste without a bulking agent. During the experiment, maturity indexes such as temperature, pH value, C/N ratio, and germination index were determined, and continuous measurements of leachate and gaseous emissions (CH4, N2O, and NH3) were taken. The results showed that all of the composts with bulking agents reached the required maturity standard, and the addition of spent mushroom substrate gave the highest maturity (C/N ratio decreased from 23 to 16 and germination index increased from 53% to 111%). The bulking agents also reduced leachate production and CH4 and N2O emissions, but had little impact on NH3 emissions. Composting with sawdust as a bulking agent was found to emit less total greenhouse gas (33 kg CO2-eq t−1 dry matter) than the other treatments.  相似文献   

10.
西北黄土地区现场石油污染土壤生物修复研究   总被引:2,自引:0,他引:2  
通过在陕北安塞油田某废弃油井建立中试试验基地,以实验室中筛选分离得到的高效降解石油的优势菌为添加的高效菌,研究土壤石油初始浓度、营养物质和高效菌对石油降解的影响.结果表明:(1)在各土壤石油初始浓度下,石油降解率总体均随降解时间的延长而升高.在土壤石油初始质量浓度为15.34 g/kg下,72 d时石油降解率为47.8...  相似文献   

11.
C Taylor  T Viraraghavan 《Chemosphere》1999,39(10):1583-1593
A bench-scale investigation (soil pan testing) was conducted with the objective of studying degradation rates of diesel contaminated soil (2500 and 10,000 ppm by weight of total petroleum hydrocarbons (TPH) to dry weight of soil) under different treatment conditions over a 17 week testing period. The greatest degradation of the diesel contaminated soil was obtained with the addition of nutrients (Co = 10,000 ppm of TPH; k = 0.19 week-1). 'k' for soil not amended with nutrients was 0.07 week-1. The control cell (C0 = 2500 ppm TPH), with sodium azide (to suppress degradation) was compared with an experimental cell of 2500 ppm initial concentration of TPH without nutrient amendment. The control cell exhibited a relatively low uniform degradation (k = 0.08 week-1) of TPH over the duration of the experiment with reasonable first-order kinetic regression statistics.  相似文献   

12.
石油污染土壤的生物修复室内模拟实验研究   总被引:1,自引:0,他引:1  
在实验室模拟的条件下,利用从克拉玛依的石油污染土壤中筛选出的4株高效降解菌,以石油烃降解率、脱氢酶活性、呼吸强度、微生物量碳氮和土壤毒性作为评价指标,研究不加生物菌剂不翻耕、不加生物菌剂翻耕、加生物菌剂不翻耕、加生物菌剂翻耕、加固定化菌剂不翻耕和加固定化菌剂翻耕6种不同实验条件对石油污染土壤修复的效果。结果表明,在63 d的修复过程中,加固定化菌剂翻耕实验F组的石油去除率达到了78.7%,比不加生物菌剂不翻耕实验A组的石油去除率提高了49.5%。随着土壤毒性逐渐降低,玉米(Zea mays L.)和赤子爱胜蚓(Eisenia fetida)可以在F组土壤中良好的生长,达到了修复的效果。  相似文献   

13.
中原油田石油污染土壤原位生物修复技术实验研究   总被引:2,自引:1,他引:1  
通过实验室选择性富集培养,从中原油田石油污染土壤中获得了能以中原原油为碳源快速生长的石油降解菌群。结合黑麦草(Ryegrass)和苜蓿(Alfalfa),采用该降解菌群对原油污染土壤进行了原位生物联合修复实验。接入降解菌的实验区分种植黑麦草、种植苜蓿、未种植区,另设黑麦草区和空白区。经过99 d的生物修复,石油烃累计降...  相似文献   

14.
Horel A  Schiewer S 《Chemosphere》2011,83(5):652-660
Bioremediation of sandy soil contaminated with fish-biodiesel, conventional diesel, and blends of both was studied in microcosm experiments at different temperatures, simulating the subarctic environment. While distinct lag, exponential, and stationary phases were observed at 20 °C, degradation at 6 °C was slow and the lag phase continued throughout the 4-week experiment. A three-phase 1st order kinetic model successfully described respiration at 20 °C, a one-phase model was sufficient at 6 °C. For temperatures fluctuating between ∼6 and ∼20 °C, higher than expected microbial activity persisted at 6 °C for several days, due to the presence of active cultures, even though the soil temperature closely followed the air temperature. At 20 °C, respiration peaked already after 1 week, and 18-51% of the initially added fuel was mineralized within 4 weeks, whereby degradation was higher at higher biodiesel percentages. Biodiesel addition accelerated mineralization of blends with regular diesel beyond expectations. In blends with 20% biodiesel, the degradation rate constant was twice as high as for conventional diesel. These synergistic effects are likely due to an active microbial population. Addition of biodiesel to conventional diesel could reduce the impact of diesel spills.  相似文献   

15.
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g?1, or moderate, ca. 20 μg g?1) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.  相似文献   

16.
A six month field scale study was carried out to compare windrow turning and biopile techniques for the remediation of soil contaminated with bunker C fuel oil. End-point clean-up targets were defined by human risk assessment and ecotoxicological hazard assessment approaches. Replicate windrows and biopiles were amended with either nutrients and inocula, nutrients alone or no amendment. In addition to fractionated hydrocarbon analysis, culturable microbial characterisation and soil ecotoxicological assays were performed. This particular soil, heavy in texture and historically contaminated with bunker fuel was more effectively remediated by windrowing, but coarser textures may be more amendable to biopiling. This trial reveals the benefit of developing risk and hazard based approaches in defining end-point bioremediation of heavy hydrocarbons when engineered biopile or windrow are proposed as treatment option.  相似文献   

17.
植物-微生物联合修复石油污染土壤的实验研究   总被引:1,自引:0,他引:1  
筛选高效石油降解菌并考察菌株的石油降解能力,通过植物-微生物联合修复石油污染土壤室内实验,在修复过程中测定了土壤中细菌和固氮菌,碱解氮、速效磷和速效钾的含量变化,同时采用傅立叶变换离子回旋共振质谱(ESI FT-ICR MS)考察了植物-微生物联合修复效果。结果表明,菌株3#、4#的生长适应性较强,其混合菌的降解效果最好,将其混合菌液与植物进行植物-微生物联合修复不同浓度的石油污染土壤,经过150 d的温室降解,最高降解率达到73.47%。ESI FT-ICR MS分析结果表明,与空白组相比,植物组的O1、O2和N1类等化合物相对丰度都发生了显著变化,石油污染物得到一定程度的生物降解。  相似文献   

18.
老化石油污染土壤的清洗处理   总被引:3,自引:1,他引:3  
以华北油田老化长达1年以上的石油污染土壤为研究对象,采用自行选配的清洗剂对该污染土壤进行了一次清洗和二次清洗处理.实验结果表明,一次清洗后,污染土壤样品的含油率从26.34%~29.90%降到6.34%~7.84%,洗油率达80.06%~81.06%;经二次清洗处理后,污染土壤样品的含油率从26.34%~29.90%降到4.05%~4.85%,洗油率达88.06%~88.19%.在一次清洗和二次清洗的基础上,通过模拟实验确定了洗油污水回用的最佳回用率为80%,最佳加药质量浓度为0.4 g/L,该条件下污水的最终产生量也较少.按照该参数对华北油田的石油污染土壤进行了清洗实验,洗油率达79.20%~80.51%.  相似文献   

19.
鼠李糖脂对不同菌株降解柴油污染物的影响   总被引:1,自引:0,他引:1  
李玉瑛  李冰 《环境工程学报》2010,4(9):2088-2092
通过一系列实验分析了鼠李糖脂对柴油污染物生物降解的影响。单菌株柴油降解实验结果表明,在添加生物表面活性剂鼠李糖脂后,各菌株细胞表面疏水性均发生不同程度的增加,并且对柴油的降解率均有所提高。在混合菌的柴油污染物降解实验中,发现当向土壤中添加了200 mg/L鼠李糖脂时,对柴油的降解才有较大的提高;而当添加100 mg/L的鼠李糖脂到水体中时,对柴油的降解就有较大的提高,而当鼠李糖脂浓度提高为200 mg/L时,柴油的降解率却没有进一步明显的提高。这说明鼠李糖脂对柴油降解的影响程度不仅与环境介质有关,还与添加的鼠李糖脂浓度有关。进一步分析表明,添加适当浓度的鼠李糖脂不仅可以提高对柴油的降解率,而且可加速其降解速度,缩短生物修复所需时间。  相似文献   

20.
When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号