首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kudo G  Ida TY  Tani T 《Ecology》2008,89(2):321-331
Light availability in the understory of deciduous forests changes drastically within the growing season due to the foliage dynamics of canopy trees. Because flowering phenology, photosynthetic characteristics, and fruiting success respond to such strong seasonality in light availability, we hypothesized that understory plants in such ecosystems should describe distinct phenological groups or syndromes where "syndrome" is defined only as a set of characteristics that co-occur. To identify these phenological syndromes, we studied the flowering phenology, fruit or seed set, and photosynthetic characteristics for 18 perennial understory herbaceous species that differed in reproductive strategy over eight years in a deciduous forest in northern Japan. Three phenological groups emerged from this study: (1) spring bloomers, flowering and fruiting before the completion of canopy closure; (2) early-summer bloomers, flowering during the progress of canopy closure and fruiting after canopy closure; and (3) late-summer bloomers, flowering and fruiting after canopy closure. The spring bloomers had high photosynthetic rates and high fruiting abilities, but the flowering time varied considerably among years due to yearly fluctuations of snowmelt date. Bumble bee-pollinated species of spring bloomers showed variable seed-set success, while fly-pollinated species showed relatively stable seed sets over the years. The early-summer bloomers showed low fruiting abilities irrespective of pollination success, reflecting severe resource limitation with decelerating light availability during fruit development. Although the late-summer bloomers showed low photosynthetic rates under low-light conditions, high fruit-set success was attained if pollination was sufficient. These results support our hypothesis that phenological syndromes may be found in deciduous forest understory plants. Given that reproductive success of bee-pollinated spring bloomers is highly susceptible to seasonal fluctuation, climate change may have its strongest impacts on this group.  相似文献   

2.
植被物候是气候变化对生物圈产生长期或短期影响的重要指示因子。气候变化已经明显改变了许多物种的营养生长和繁殖物候,尤其是在温带地区。研究温带森林物候变化及其对全球变暖的响应,对认识森林物种共存,协同进化以及森林保护和经营等有重要意义。通过概述温带森林下物候研究的进展发现,光照和积温是影响木本植物展叶及繁殖物候的关键因素,林下层树木通过更早展叶,以尽量减少生长季林冠层遮阴对下层树木生长的影响,更早时期开花的树木具有从顶部向四周次第开花的时空格局,林冠层树种开花具有较好的同步性。而草本植物的物候通常受融雪时间和冠层动态的影响更大,并且,温带森林下不同生活史对策的草本植物的物候特征对气候变化的响应也不尽相同,存在明显的季节动态。繁殖物候、光照的季节变化、光合特征、授粉成功之间的联系决定了林下不同繁殖特性的草本植物的繁殖成功率。量化的、多指标、多对象的定位监测是精准物候研究的基础,物候变化的机理和建立可预测的物候模型将是未来研究的重点。  相似文献   

3.
Phenological tracking enables positive species responses to climate change   总被引:1,自引:0,他引:1  
Earlier spring phenology observed in many plant species in recent decades provides compelling evidence that species are already responding to the rising global temperatures associated with anthropogenic climate change. There is great variability among species, however, in their phenological sensitivity to temperature. Species that do not phenologically "track" climate change may be at a disadvantage if their growth becomes limited by missed interactions with mutualists, or a shorter growing season relative to earlier-active competitors. Here, we set out to test the hypothesis that phenological sensitivity could be used to predict species performance in a warming climate, by synthesizing results across terrestrial warming experiments. We assembled data for 57 species across 24 studies where flowering or vegetative phenology was matched with a measure of species performance. Performance metrics included biomass, percent cover, number of flowers, or individual growth. We found that species that advanced their phenology with warming also increased their performance, whereas those that did not advance tended to decline in performance with warming. This indicates that species that cannot phenologically "track" climate may be at increased risk with future climate change, and it suggests that phenological monitoring may provide an important tool for setting future conservation priorities.  相似文献   

4.
The semiarid, northern Mongolian steppe, which still supports pastoral nomads who have used the steppe for millennia, has experienced an average 1.7 degrees C temperature rise over the past 40 years. Continuing climate change is likely to affect flowering phenology and flower numbers with potentially important consequences for plant community composition, ecosystem services, and herder livelihoods. Over the growing seasons of 2009 and 2010, we examined flowering responses to climate manipulation using open-top passive warming chambers (OTCs) at two locations on a south-facing slope: one on the moister, cooler lower slope and the other on the drier, warmer upper slope, where a watering treatment was added in a factorial design with warming. Canonical analysis of principal coordinates (CAP) revealed that OTCs reduced flower production and delayed peak flowering in graminoids as a whole but only affected forbs on the upper slope, where peak flowering was also delayed. OTCs affected flowering phenology in seven of eight species, which were examined individually, either by altering the time of peak flowering and/or the onset and/or cessation of flowering, as revealed by survival analysis. In 2010, which was the drier year, OTCs reduced flower production in two grasses but increased production in an annual forb found only on the upper slope. The particular effects of OTCs on phenology, and whether they caused an extension or contraction of the flowering season, differed among species, and often depended on year, or slope, or watering treatment; however, a relatively strong pattern emerged for 2010 when four species showed a contraction of the flowering season in OTCs. Watering increased flower production in two species in 2010, but slope location more often affected flowering phenology than did watering. Our results show the importance of taking landscape-scale variation into account in climate change studies and also contrasted with those of several studies set in cold, but wetter systems, where warming often causes greater or accelerated flower production. In cold, water-limited systems like the Mongolian steppe, warming may reduce flower numbers or the length of the flowering season by adding to water stress more than it relieves cold stress.  相似文献   

5.
Rafferty NE  Ives AR 《Ecology》2012,93(4):803-814
The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.  相似文献   

6.
Liu Y  Reich PB  Li G  Sun S 《Ecology》2011,92(6):1201-1207
Phenological mismatches due to climate change may have important ecological consequences. In a three-year study, phenological shifts due to experimental warming markedly altered trophic relationships between plants and insect herbivores, causing a dramatic decline of reproductive capacity for one of the plant species. In a Tibetan meadow, the gentian (Gentiana formosa) typically flowers after the peak larva density of a noctuid moth (Melanchra pisi) that primarily feeds on a dominant forb (anemone, Anemone trullifolia var. linearis). However, artificial warming of approximately 1.5 degrees C advanced gentian flower phenology and anemone vegetative phenology by a week, but delayed moth larvae emergence by two weeks. The warming increased larval density 10-fold, but decreased anemone density by 30%. The phenological and density shifts under warmed conditions resulted in the insect larvae feeding substantially on the gentian flowers and ovules; there was approximately 100-fold more damage in warmed than in unwarmed chambers. This radically increased trophic connection reduced gentian plant reproduction and likely contributed to its reduced abundance in the warmed chambers.  相似文献   

7.
Understanding the effects of climate change on boreal forests which hold about 7% of the global terrestrial biomass carbon is a major issue. An important mechanism in boreal tree species is acclimatization to seasonal variations in temperature (cold hardiness) to withstand low temperatures during winter. Temperature drops below the hardiness level may cause frost damage. Increased climate variability under global and regional warming might lead to more severe frost damage events, with consequences for tree individuals, populations and ecosystems. We assessed the potential future impacts of changing frost regimes on Norway spruce (Picea abies L. Karst.) in Sweden. A cold hardiness and frost damage model were incorporated within a dynamic ecosystem model, LPJ-GUESS. The frost tolerance of Norway spruce was calculated based on daily mean temperature fluctuations, corresponding to time and temperature dependent chemical reactions and cellular adjustments. The severity of frost damage was calculated as a growth-reducing factor when the minimum temperature was below the frost tolerance. The hardiness model was linked to the ecosystem model by reducing needle biomass and thereby growth according to the calculated severity of frost damage. A sensitivity analysis of the hardiness model revealed that the severity of frost events was significantly altered by variations in the hardening rate and dehardening rate during current climate conditions. The modelled occurrence and intensity of frost events was related to observed crown defoliation, indicating that 6-12% of the needle loss could be attributed to frost damage. When driving the combined ecosystem-hardiness model with future climate from a regional climate model (RCM), the results suggest a decreasing number and strength of extreme frost events particularly in northern Sweden and strongly increasing productivity for Norway spruce by the end of the 21st century as a result of longer growing seasons and increasing atmospheric CO2 concentrations. However, according to the model, frost damage might decrease the potential productivity by as much as 25% early in the century.  相似文献   

8.
Abstract:  To explain current plant invasions, or predict future ones, more knowledge on which factors increase the probability of alien species becoming naturalized and subsequently invasive is needed. We created a database of the alien plants in seminatural habitats in Ireland that included data on taxonomy, invasive status, invasion history, distribution, and biological and ecological plant characteristics. We used information from this database to determine the importance of these factors in increasing the ability of species to become naturalized and invasive. More specifically, we used two multiple logistic regressions to identify factors that distinguish naturalized from casual alien plant species and invasive from noninvasive, naturalized alien species. Clonal growth, moisture-indicator value, nitrogen-indicator value, native range, and date of first record affected (in order of decreasing importance) the probability of naturalization. Factors that distinguished invasive from noninvasive species were ornamental introduction, hermaphrodite flowers, pollination mode, being invasive elsewhere, onset of flowering season, moisture-indicator value, native range, and date of first record. Incorporation of phylogenetic information had little influence on the results, suggesting that the capacity of alien species to naturalize and become invasive evolved largely independently in several phylogenetic lineages. Whereas some of the variables were important for both transitions, others were only important for naturalization or for invasion. This emphasizes the importance of studying different stages of the invasion process when looking for mechanisms of becoming a successful invasive plant, instead of simply comparing invasive with noninvasive alien species. Our results also suggest that a combination of species traits and other variables is likely to produce the most accurate prediction of invasions.  相似文献   

9.
Diamond SE  Frame AM  Martin RA  Buckley LB 《Ecology》2011,92(5):1005-1012
How do species' traits help identify which species will respond most strongly to future climate change? We examine the relationship between species' traits and phenology in a well-established model system for climate change, the U.K. Butterfly Monitoring Scheme (UKBMS). Most resident U.K. butterfly species have significantly advanced their dates of first appearance during the past 30 years. We show that species with narrower larval diet breadth and more advanced overwintering stages have experienced relatively greater advances in their date of first appearance. In addition, species with smaller range sizes have experienced greater phenological advancement. Our results demonstrate that species' traits can be important predictors of responses to climate change, and they suggest that further investigation of the mechanisms by which these traits influence phenology may aid in understanding species' responses to current and future climate change.  相似文献   

10.
As a result of climate change, many plants are now flowering measurably earlier than they did in the past. However, some species' flowering times have changed much more than others. Data at the community level can clarify the variation in flowering responses to climate change. In order to determine how North American species' flowering times respond to climate, we analyzed a series of previously unstudied records of the dates of first flowering for over 500 plant taxa in Concord, Massachusetts, USA. These records began with six years of observations by the famous naturalist Henry David Thoreau from 1852 to 1858, continued with 16 years of observations by the botanist Alfred Hosmer in 1878 and 1888-1902, and concluded with our own observations in 2004, 2005, and 2006. From 1852 through 2006, Concord warmed by 2.4 degrees C due to global climate change and urbanization. Using a subset of 43 common species, we determined that plants are now flowering seven days earlier on average than they did in Thoreau's times. Plant flowering times were most correlated with mean temperatures in the one or two months just before flowering and were also correlated with January temperatures. Summer-flowering species showed more interannual variation in flowering time than did spring-flowering species, but the flowering times of spring-flowering species correlated more strongly to mean monthly temperatures. In many cases, such as within the genera Betula and Solidago, closely related, co-occurring species responded to climate very differently from one another. The differences in flowering responses to warming could affect relationships in plant communities as warming continues. Common St. John's wort (Hypericum perforatum) and highbush blueberry (Vaccinium corymbosum) are particularly responsive to changes in climate, are common across much of the United States, and could serve as indicators of biological responses to climate change. We discuss the need for researchers to be aware, when using data sets involving multiple observers, of how varying methodologies, sample sizes, and sampling intensities affect the results. Finally, we emphasize the importance of using historical observations, like those of Thoreau and Hosmer, as sources of long-term data and to increase public awareness of biological responses to climate change.  相似文献   

11.
The impact of 2 × CO2 driven climate change on radial growth of boreal tree species Pinus banksiana Lamb., Populus tremuloides Michx. and Picea mariana (Mill.) BSP growing in the Duck Mountain Provincial Forest of Manitoba (DMPF), Canada, is simulated using empirical and process-based model approaches. First, empirical relationships between growth and climate are developed. Stepwise multiple-regression models are conducted between tree-ring growth increments (TRGI) and monthly drought, precipitation and temperature series. Predictive skills are tested using a calibration–verification scheme. The established relationships are then transferred to climates driven by 1× and 2 × CO2 scenarios using outputs from the Canadian second-generation coupled global climate model. Second, empirical results are contrasted with process-based projections of net primary productivity allocated to stem development (NPPs). At the finest scale, a leaf-level model of photosynthesis is used to simulate canopy properties per species and their interaction with the variability in radiation, temperature and vapour pressure deficit. Then, a top-down plot-level model of forest productivity is used to simulate landscape-level productivity by capturing the between-stand variability in forest cover. Results show that the predicted TRGI from the empirical models account for up to 56.3% of the variance in the observed TRGI over the period 1912–1999. Under a 2 × CO2 scenario, the predicted impact of climate change is a radial growth decline for all three species under study. However, projections obtained from the process-based model suggest that an increasing growing season length in a changing climate could counteract and potentially overwhelm the negative influence of increased drought stress. The divergence between TRGI and NPPs simulations likely resulted, among others, from assumptions about soil water holding capacity and from calibration of variables affecting gross primary productivity. An attempt was therefore made to bridge the gap between the two modelling approaches by using physiological variables as TRGI predictors. Results obtained in this manner are similar to those obtained using climate variables, and suggest that the positive effect of increasing growing season length would be counteracted by increasing summer temperatures. Notwithstanding uncertainties in these simulations (CO2 fertilization effect, feedback from disturbance regimes, phenology of species, and uncertainties in future CO2 emissions), a decrease in forest productivity with climate change should be considered as a plausible scenario in sustainable forest management planning of the DMPF.  相似文献   

12.
研究了增强UV-B辐射对大田生长的两种番茄(早熟型“同辉”和晚熟型“霞光”)某些繁殖特性(最大开花数、花粉萌发和花粉管伸长、果实产量、果实品质以及子代种子的数量和质量)的影响.结果表明,与对照相比,“同辉”开花数在高辐射下增加,“霞光”开花数在低辐射下减少;“同辉”果实产量在两种辐射下都明显增加,而“霞光”果实产量只在低辐射下增加;辐射抑制了“同辉”的花粉萌发和花粉管伸长,而只是降低了“霞光”的花粉萌发率;强辐射造成两种番茄果实番茄红素下降。经过一季的增强UV-B辐射处理,“同辉”种子数量增加,低辐射下种子明显变小;“霞光”种子数量减少,且明显变小.就开花数、果实产量和种子质量而言,早熟的“同辉”品种更具抗性,而晚熟的“霞光”更敏感.图3表1参29  相似文献   

13.
银缕梅花芽生长和开花习性的观察   总被引:8,自引:0,他引:8  
为了探索银缕梅稀有频危原因,于1990~1995年连续对其花芽生长和开花习性进行观察.结果表明:银缕梅花芽分化到苞片展开,需经1a时间;苞片展开,雌、雄蕊裸露20d后.雄蕊趋于成熟,雌蕊比雄蕊迟熟5~9d,故为雌雄异熟型.银缕梅坐果率为0~1(2),经人工辅助授粉可明显提高坐果率1倍以上,并能增强种子活力,使种子发芽率上升到85%~90%.  相似文献   

14.
Tanentzap AJ  Lee WG  Coomes DA 《Ecology》2012,93(3):462-469
Synchronous and intermittent reproduction in long-lived plants, known as mast seeding, is induced by climatic cues, but the mechanism explaining variation in masting among neighboring but edaphically segregated species is unknown. Soil nutrients can enhance flowering, and thus, populations on nutrient-rich soils may require less-favorable growing temperatures to flower. We tested this hypothesis by predicting the probability of flowering in response to air temperature for five species of alpine Chionochloa grasses in South Island, New Zealand, over 37 years and relating our predictions to soil N supply (NH4(+) + NO3(-)). Summer air temperatures better predicted flowering than spring air temperatures, which were correlated with soil N mineralization. Species on N-rich soils required lower mean temperatures to induce flowering and/or responded more consistently across a gradient of air temperatures, contributing to the higher probability of their tillers and tussocks flowering at low summer temperatures. Our results suggest that flowering primarily occurs in response to warm summer temperatures, but species on N-rich soils require less favorable growing conditions because they invest relatively less N in seeds. Thus, predicting masting requires a consideration of the interactions among climate, the internal resources of plants, and mineral nutrient uptake.  相似文献   

15.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   

16.
This paper is the first of three on the coffee production system consisting of (1) the coffee plant, (2) coffee berry borer (CBB) and (3) the role of CBB parasitoids. A previous simulation model of the coffee plant was developed using data from Brazil where coffee phenology is characterized by distinct seasonal flowering (Gutierrez et al., 1998). In contrast, flowering in Colombia is continuous with low seasonality. To capture the differences in coffee phenology and growth in the two climatic regions, the Gutierrez et al. (1998) model was modified using new data from Colombia.The modifications to the model include:
(1)
The effect of solar radiation on floral buds initiation;
(2)
An age structure population model to track the daily input and development of the floral buds;
(3)
The effect of leaf water potential on breaking dormancy in flower buds, and hence on the timing and intensity of flowering;
(4)
The incorporation of both the vegetative and the reproductive demands to predict the photosynthetic rate.
(5)
The effect of low temperature on photosynthesis and defoliation.
Other aspects of the model were re-interpreted and refinements made to generalize its structure for use across coffee varieties and geographic areas. The model, without modification, realistically simulates field data from Brazil and two Colombian locations having different varieties, patterns of rainfall and hence flowering phenology.The model will be used as the base trophic level for incorporating CBB and high tropic levels effects, and for the analysis of management options in the coffee production system.  相似文献   

17.
Abstract:  An important aim of conservation biology is to understand how habitat change affects the dynamics and extinction risk of populations. We used matrix models to analyze the effect of habitat degradation on the demography of the declining perennial plant Trifolium montanum in 9 calcareous grasslands in Germany over 4 years and experimentally tested the effect of grassland management. Finite population growth rates (λ) decreased with light competition, measured as leaf-area index above T. montanum plants. At unmanaged sites λ was <1 due to lower recruitment and lower survival and flowering probability of large plants. Nevertheless, in stochastic simulations, extinction of unmanaged populations of 100 flowering plants was delayed for several decades. Clipping as a management technique rapidly increased population growth because of higher survival and flowering probability of large plants in managed than in unmanaged plots. Transition-matrix simulations from these plots indicated grazing or mowing every second year would be sufficient to ensure a growth rate ≥1 if conditions stayed the same. At frequently grazed sites, the finite growth rate was approximately 1 in most populations of T. montanum . In stochastic simulations, the extinction risk of even relatively small grazed populations was low, but about half the extant populations of T. montanum in central Germany are smaller than would be sufficient for a probability of survival of >95% over 100 years. We conclude that habitat change after cessation of management strongly reduces recruitment and survival of established individuals of this perennial plant. Nevertheless, our results suggest extinction processes may take a long time in perennial plants, resulting in an extinction debt. Even if management is frequent, many remnant populations of T. montanum may be at risk because of their small size, but even a slight increase in size could considerably reduce their extinction risk.  相似文献   

18.
Abstract: We analyzed the relationships between population size and reproductive characteristics in the perennial prairie forb Phlox pilosa , an obligate outcrossing butterfly-pollinated species. We examined 27 populations ranging in size from 9 to over 75,000 flowering ramets in two regions of the state of Iowa (eastcentral and northwest) in 1993 and 1994. We collected flowers from each population and scored them for pollen arrival to stigmas and number of pollen tubes. We collected fruiting ramets from each population at the end of the Phlox growing season and scored them for height, biomass, and reproductive variables, including the number of flowers initiated and opened and the number of capsules initiated and matured. In both years, population size was significantly correlated with the number of capsules matured per ramet. Differences between populations in capsule production were set primarily at the pollination stage. In 1993, pollen arrival to stigmas was significantly lower than in 1994 and was correlated with population size in eastcentral Iowa populations, indicating that lower reproduction in small populations that year was at least partially due to inadequate amounts of pollen being moved. In 1993, weather conditions likely depressed pollinator activity, but absolute capsule formation was high because of high flower production per ramet and high population densities. In 1994, when pollen arrival to stigmas was relatively high and unrelated to population size, outcross pollen movement was greater in larger populations. Increased efficacy of outcross pollen movement in 1994 may have resulted from lower flower production and less dense populations forcing greater pollinator movement between ramets or from variation between years in fine-scale spatial genetic substructuring of populations. Our results indicate that the viability of Phlox pilosa can be best ensured by protecting and creating populations of at least 1000–2000 flowering ramets.  相似文献   

19.
Pearson DE  Callaway RM  Maron JL 《Ecology》2011,92(9):1748-1757
Escape from specialist natural enemies is frequently invoked to explain exotic plant invasions, but little attention has been paid to how generalist consumers in the recipient range may influence invasion. We examined how seed preferences of the widespread generalist granivore Peromyscus maniculatus related to recruitment of the strongly invasive exotic Centaurea stoebe and several weakly invasive exotics and natives by conducting laboratory feeding trials and seed addition experiments in the field. Laboratory feeding trials showed that P. maniculatus avoided consuming seeds of C. stoebe relative to the 12 other species tested, even when seeds of alternative species were 53-94% smaller than those of C. stoebe. Seed addition experiments conducted in and out of rodent exclosures revealed that weakly invasive exotics experienced relatively greater release from seed predation than C. stoebe, although this was not the case for natives. Seed mass explained 81% of the variation in recruitment associated with rodent exclusion for natives and weak invaders, with larger-seeded species benefiting most from protection from granivores. However, recruitment of C. stoebe was unaffected by rodent exclusion, even though the regression model predicted seeds of correspondingly large mass should experience substantial predation. These combined laboratory and field results suggest that generalist granivores can be an important biological filter in plant communities and that species-specific seed attributes that determine seed predation may help to explain variation in native plant recruitment and the success of exotic species invasions.  相似文献   

20.
Vile D  Shipley B  Garnier E 《Ecology》2006,87(2):504-517
From a functional perspective, changes in abundance, and ultimately species replacement, during succession are a consequence of integrated suites of traits conferring different relative ecological advantages as the environment changes over time. Here we use structural equations to model the interspecific relationships between these integrated functional traits using 34 herbaceous species from a Mediterranean old-field succession and thus quantify the notion of a plant strategy. We measured plant traits related to plant vegetative and reproductive size, leaf functioning, reproductive phenology, seed mass, and production on 15 individuals per species monitored during one growing season. The resulting structural equation model successfully accounts for the pattern of trait covariation during the first 45 years post-abandonment using just two forcing variables: time since site abandonment and seed mass; no association between time since field abandonment and seed mass was observed over these herbaceous stages of secondary succession. All other predicted traits values are determined by these two variables and the cause-effect linkage between them. Adding pre-reproductive vegetative mass as a third forcing variable noticeably increased the predictive power of the model. Increasing the time after abandonment favors species with increasing life span and pre-reproductive biomass and decreasing specific leaf area. Allometric coefficients relating vegetative and reproductive components of plant size were in accordance with allometry theory. The model confirmed the trade-off between seed mass and seed number. Maximum plant height and seed mass were major determinants of reproductive phenology. Our results show that beyond verbal conceptualization, plant ecological strategies can be quantified and modeled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号