首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
ABSTRACT: Mandatory water conservation in the form of restrictions on outdoor watering, car washing, and recreation was implemented in the City of Austin, Texas, during the summers of 1984 and 1985. Three different stages of restrictions were implemented limiting the number of watering hours per day, as well as a restriction that allowed lawn watering once every five days according to the last digit of the street address, Intervention analysis using a transfer function-noise model of daily water use is applied to assess the impact of the restrictions. Compared to a peak water use rate of about 170 MGD, it is shown that mandatory restrictions in 1984 reduced water use by an average of 13.5 MGD, while similar restrictions during the summer of 1985 reduced usage by an average of 5.5 MGD. Lawn watering restrictions on a five-day cycle produced a corresponding five-day cycle in water use of more than 10 MGD in amplitude in 1985. An alternative lawn watering scheme that eliminates this cycle is prescribed.  相似文献   

2.
ABSTRACT: Drought conditions in the summer of 2002 prompted several cities along Colorado's Front Range to enact restrictions on outdoor water use, focusing primarily on limiting the frequency of lawn watering. The different approaches utilized by eight water providers were tracked to determine the level of water savings achieved, measured as a comparison of 2002 usage to 2000 to 2001 average usage, and also based on a statistical estimate of 2002 “expected use” that accounts for the impact of drought conditions on demand. Mandatory restrictions were shown to be an effective tool for drought coping. During periods of mandatory restrictions, savings measured in expected use per capita ranged from 18 to 56 percent, compared to just 4 to 12 percent savings during periods of voluntary restrictions. As anticipated, providers with the most stringent restrictions achieved the greatest savings.  相似文献   

3.
During the 1976–77 drought, three principal mechanisms were used to reduce water use in Utah communities: price increases, maximum monthly use restrictions, and restrictions on outdoor watering times. A regression model was developed to explain observed changes in water use, with price, type of restriction, household size, and summer rainfall as independent variables. For an average system, a 1 percent increase in price would reduce water use by 0.07 to 0.09 percent. A 1 percent increase in outdoor watering time restriction reduces use by 0.064 to 0.075 percent. A 1 percent increase in quantity restrictions leads to a reduction in water use of 0.014 to 0.054 percent. The effectiveness of rationing policies is influenced by system characteristics. For example, outdoor watering time restrictions were less effective in systems with above average household size and below average monthly use.  相似文献   

4.
Abstract: Many municipalities have implemented demand management of outdoor water use. Measures such as restrictions on lawn watering and promotion of xeriscaping are effective in reducing water demand during summer months, especially during dry spells. However, little research examines a key factor shaping the success of these programs: residents’ perceptions of and satisfaction with such conservation measures. This article describes an urban outdoor water conservation program in Guelph, Ontario, assesses that program from the perspective of residents, and explores socio‐economic, attitudinal and other factors associated with residents’ assessment of the program. A survey of Guelph residents revealed broad support for the program, which includes restrictions on various outdoor water uses and, under certain circumstances, a ban on lawn watering. However, there was much uncertainty among residents about the effectiveness of the program in reducing water use and the effectiveness of program enforcement. Key factors influencing residents’ assessment of the program were neighborhood, gender and environmental attitude. Implications for the design and implementation of outdoor water conservation programs are discussed, including the importance of better communication of information on program effectiveness and enforcement.  相似文献   

5.
ABSTRACT: Groundwater pumping constitutes approximately 100 percent of the water supply in the Tucson Active Management Area (AMA), Arizona. The current annual overdraft approaches 250,000 acre-feet, but the goal of the AMA is to eliminate the overdraft by the year 2025. Urban water reuse, if implemented by only 30 percent of the area's projected population, would reduce the annual ground-water overdraft by 25,000 acre-feet.  相似文献   

6.
The Truckee River heads in the Sierra Nevada at Lake Tahoe, and terminates in Pyramid Lake. During the 1969 water year, flow about 9 miles upstream from the mouth (974,000 acre-ft) was almost four times the long-term average, due mainly to heavy winter rains and spring snowmelt. A short period of low-altitude rainfall produced the highest concentrations of suspended sediment, whereas a much longer subsequent period of snowmelt yielded a much greater total quantity of material. The upper 90 percent of the basin yielded about 260 acre-feet (630,000 tons) of sediment at the Nixon gage, whereas an estimated 2,800 acre-feet (6.8 million tons) was contributed by erosion of about 200 acres of river bank below the gage. Solute content at the gage ranged from 80 to 450 mg/l, dominated by calcium, sodium, and bicarbonate, plus silica in the most dilute snowmelt and chloride in the most concentrated low flows. Solute load totaled about 130,000 tons, of which the principal constituents in Pyramid Lake-sodium plus equivalent bicarbonate and chloride-amounted to almost 40,000 tons. The total solute load during a year of average flow may be 45,000-55,000 tons, including 18,000-22,000 tons of principal lake constituents.  相似文献   

7.
ABSTRACT: Water hyacinth, an attractive, floating aquatic plant, poses a substantial threat of unanticipated water loss from Texas reservoirs. A mature plant will lose about three times as much water through evapotranspiration as is lost from evaporation of an equivalent area of open water. The reservoirs of east and southeast Texas, which comprise the bulk of the state's existing and planned water storage capacity, seem likely to suffer a 20 percent average surface infestation of water hyacinth. A coverage that great will result in a yearly net loss of over 2,000,000 acre-feet of impounded water, based on present water development plans for the state. This would amount to nearly 20 percent of the anticipated yield from the reservoirs affected. An effective aquatic plant control program could head off the threat of this significant water loss.  相似文献   

8.
Abstract: Residential water demand is a function of several factors, some of which are within the control of water utilities (e.g., price, water restrictions, rebate programs) and some of which are not (e.g., climate and weather, demographic characteristics). In this study of Aurora, Colorado, factors influencing residential water demand are reviewed during a turbulent drought period (2000‐2005). Findings expand the understanding of residential demand in at least three salient ways: first, by documenting that pricing and outdoor water restriction policies interact with each other ensuring that total water savings are not additive of each program operating independently; second, by showing that the effectiveness of pricing and restrictions policies varies among different classes of customers (i.e., low, middle, and high volume water users) and between predrought and drought periods; and third, in demonstrating that real‐time information about consumptive use (via the Water Smart Reader) helps customers reach water‐use targets.  相似文献   

9.
ABSTRACT: Accurate water balance calculations are essential for water resource and environmental management decisions, but many of the terms used in the equation are difficult to measure. In this study, a method for measuring rates of evapotranspiration and net seepage from a freshwater marsh in southwest Florida is described. The results are compared to evaporation pan estimates as well as to calculations that balanced all the terms in the hydrologic budget. The measured rates of evapotranspiration showed a. distinct seasonal trend ranging from an average high of 0.24 in/d during July 1992 to a low of 0.06 in/d in January 1993. Evapotranspiration rates were higher than Class A evaporation pan measurements during July and August, indicating transpiration by plants exceeded evaporation by pans. Net ground water seepage flowed out of the marsh except during periods of high water table conditions. When all terms in the hydrologic budget were evaluated, the equation balanced on a yearly basis with an error of 2 percent, on a seasonal basis with errors less than 7 percent, but on a monthly basis errors were as great as 30 percent. Total annual rainfall on the marsh was 45 percent of the total marsh hydrologic input and was approximately equal to the loss by evapotranspiration of 41 percent.  相似文献   

10.
ABSTRACT: Increasing block-rate prices for irrigation water were implemented during 1989 in a 10,000-acre irrigation district in California's San Joaquin Valley. The program motivated improvements in irrigation practices that reduced the volume of water delivered to farm fields and the volume of drain water collected in on-farm drainage systems. The ratio of net crop water requirements to field deliveries increased from 0.65 in 1988 to 0.73 in 1989. The volume of drain water collected at a subset of 20 drainage systems was reduced by 351.1 acre-feet (11.5 percent). Estimated loads of salt, boron, and selenium were reduced by 2,407 tons (11.0 percent), 3.33 tons (11.0 percent), and 0.07 tons (9.2 percent).  相似文献   

11.
ABSTRACT: In order to assess the effects. of silvicultural and drainage practices on water quality it is necessary to understand their impacts on hydrology. The hydrology of a 340 ha artificially drained forested watershed in eastern North Carolina was studied for a five-year period (1988–92). Effects of soils, beds and changes in vegetation on water table depth, evapotranspiration (ET) and drainage outflows were analyzed. Total annual outflows from the watershed varied from 29 percent of the rainfall during the driest year (1990) when mostly mature trees were present to as much as 53 percent during a year of normal rainfall (1992) after about a third of the trees were harvested. Annual ET from the watershed, calculated as the difference between annual rainfall and outflow, varied from 76 percent of the calculated potential ET for a dry year to as much as 99 percent for a wet year. Average estimated ET was 58 percent of rainfall for the five-year period. Flow rates per unit area were consistently higher from a smaller harvested block (Block B - 82 ha) of the watershed than from the watershed as a whole. This is likely due to time lags, as drainage water flows through the ditch-canal network in the watershed, and to timber harvesting of the smaller gaged block.  相似文献   

12.
ABSTRACT: Accurate estimates of evapotranspiration from areas dominated by wetland vegetation are needed in the water budget of the Upper St. Johns River Basin. However, local data on evapotranspiration rates, especially in wetland environments, were lacking in the project area. In response to this need, the St. Johns River Water Management District collected evapotranspiration field data in Fort Drum Marsh Conservation Area over the period 1996 through 1999. Three large lysimeters were installed to measure the evapotranspiration from different wetland environments: sawgrass (Cladium jamaicense), cattail (Typha domingensis), and open water. In addition, pan evaporation was measured with a standard class “A” pan. Concurrently, meteorological data including rainfall, solar radiation, wind speed, relative humidity, air temperature, and atmospheric pressure were collected. By comparing computed evapotranspiration rates with those measured in the lysimeters, parameters in the Penman‐Monteith, the Priestley‐Taylor, and Reference‐ET methods, and evaporation pan coefficients were estimated for monthly and seasonal cycles. The results from the data collected in this study show that mean monthly evapotranspiration rates, computed by the different methods, are relatively close. From a practical point of view, results indicate that the evaporation pan can be used equally well as the more complex and data‐intensive methods. This paper presents the measured evapotranspiration rates, evaporation pan coefficients, and the estimated parameter values for three different methods to compute evapotranspiration in the project area. Since local data on evaporation are often scarce or lacking, this information may be useful to watershed hydrologists for practical application in other project regions.  相似文献   

13.
Los Angeles has a long history of importing water; however, drought, climate change, and environmental mitigation have forced the City to focus on developing more local water sources (target of 50% local supply by 2035). This study aims to improve understanding of water cycling in Los Angeles, including the impacts of imported water and water conservation policies. We evaluate the influence of local water restrictions on discharge records for 12 years in the Ballona Creek (urban) and Topanga Creek (natural) watersheds. Results show imported water has significantly altered the timing and volume of streamflow in the urban Ballona watershed, resulting in runoff ratios above one (more streamflow than precipitation). Further analysis comparing pre‐ vs. during‐mandatory water conservation periods shows there is a significant decrease in dry season streamflow during‐conservation in Ballona, indicating that prior to conservation efforts, heavy irrigation and other outdoor water use practices were contributing to streamflow. The difference between summer streamflow pre‐ vs. during‐conservation is enough to serve 160,000 customers in Los Angeles. If Los Angeles returns to more watering days, educating the public on proper irrigation rates is critical for ensuring efficient irrigation and conserving water; however, if water restrictions remain in place, the City must take the new flow volumes into account for complying with water quality standards in the region.  相似文献   

14.
ABSTRACT: Economic theory clearly indicates that the use of increasing rate structures will reduce the demand for water and produce monetary incentives for consumers to conserve. One problem with estimating the effectiveness of using rate structures as a conservation program is that they are usually accompanied by other conservation efforts. Thus, it is difficult to determine the effectiveness of any one conservation component. This paper examines the effectiveness of increasing rate structures in a situation where no other conservation program was introduced. The paper uses customer data from the Spalding County (Georgia) Water Authority where an increasing rate structure replaced a descending rate structure in January 1991. Since the imposition of the increasing rate structure, the number of customers has increased 21 percent while total water demand has gone up only 15 percent and per customer water use has declined 5 percent. The daily water use per connection has declined from 243 gallons in 1990 to 231 in 1993, and monthly use has gone from 7,381 gallons to 7,028 per connection over the same period. Statistical tests indicate that water consumption during the two periods was significantly different while weather factors were not.  相似文献   

15.
ABSTRACT: Ground water irrigation pumpage of the High Plains Aquifer is controlled at the state level in Texas and Oklahoma but at the regional level in Kansas and Nebraska. Critical declines in the aquifer that threatened the reliability of local public water supply wells prompted Nebraska's Upper Republican Natural Resources District (URNRD) to mandate water restrictions in 1978. Under current regulations, irrigators may not extract more than 1,842 millimeters of water per certified hectare (ha) in any five‐year period. Meter monitoring ensures that irrigators comply with restrictions. Farmers now incorporate irrigation scheduling into their cropping practices in order to meet URNRD controls. This study examines whether irrigators are using ground water efficiently while complying with pumpage limits. Crop irrigation requirements (CIR) from 1986 to 1999 were derived from a water balance approach incorporating Penman‐Monteith evapotranspira‐tion (ET) calculations from weather data supplied by the High Plains Climate Center automated weather station network. A ratio of average water pumped per well to the CIR was developed to verify irrigation efficiency. Results indicate that irrigation applications were less than CIR during most irrigation seasons. Irrigation efficiency increases can be attributed to crop rotations, favorable growing season precipitation, use of ET estimates to schedule irrigation, and water allocations limited to less than all certified hectares.  相似文献   

16.
Out study deals with the demand for water and alternative agricultural production and land use patterns under varying prices for both surface and ground water. We derive irrigation water demands for both the United States and regions of it. Not only is a different amount of water used at each set of water prices but also a different mix of crops, livestock, and production technology develops among the different regions. Under the highest set of prices used, more than fourteen million acres are converted into dryland farming. Total irrigated water use decreases by more than 25 million acre-feet. Irrigated crop yields are reduced and cropping patterns shift away from irrigation. Commodity shadow prices increase as much as 15 percent under high prices for both surface and ground water. A redistribution of farm income occurs between irrigated and dryland regions.  相似文献   

17.
ABSTRACT: A water supply network optimization model called MODSIM3 is presented as a decision-support tool for aiding city staff in determining how best to utilize and exchange existing and potential water supplies with other users in a river basin. The model is applied to the City of Fort Collins, Colorado, water supply system as a means of determining optimum ways the City can utilize direct flow rights, storage rights, and exchangeable waters from various sources. Results clearly confirm both the benefits of the use of exchanges and the value of MODSIM3 as a water supply planning and management tool.  相似文献   

18.
Abstract: Landscape water conservation is an important issue for municipalities throughout the Western United States, and especially in Utah as rapid growth strains existing water supplies. We conducted interdisciplinary research in Layton, Utah, that aimed at understanding patterns of landscape water use among households and businesses. The research project involved three basic tasks. First, a landscape “water budget” was developed by producing a calibrated and classified mosaic of landscape type and area from airborne multispectral digital imagery, integrating this information with Layton City parcel boundary data to determine landscape vegetated areas per lot, and estimating irrigation needs derived from reference evapotranspiration (ETo) obtained using weather data for the Salt Lake City metropolitan region. Second, utilizing Layton water billing data, water use for each household and business was identified and categorized as “conserving,”“acceptable” or “wasteful” by determining how much the water applied varied from actual landscape plant need. Third, surveys were administered to a random stratified sample of households and businesses in the study area to investigate various factors that were hypothesized to be predictive of wasteful watering practices. This paper primarily focuses on analysis of the household and business survey data, which explores factors affecting urban landscape water use from a human behavioral perspective. We found that the most significant factors predicting actual water use were the type of irrigation system and whether the location was a household or business. Attitudinal and motivational characteristics were not consistently associated with water use. We found that wasteful watering is the result of many factors embedded in the complex context of urban landscapes. This implies that water conservation programs should identify potential wasteful users through analyses of water billing data and direct water conservation measures at these users by focusing on site‐specific evaluations and recommendations. Water audits or water checks are one such tool that some communities have employed to help people understand and assess the quantity of water needed by and applied to their landscapes. This approach provides an opportunity to evaluate situational constraints at particular locations and design appropriate strategies for reducing water waste.  相似文献   

19.
ABSTRACT: The water budget computation in shallow lakes is complicated because marsh vegetation can transpire large quantities of lake water. Thus, a model including the marsh zone evapotranspiration (WET) was developed to compute the water budget for Lake Okeechobee. Three periods of testing (1969–74), planning (1963–74), and recorded period (1952–77) were used to compare the differences of the sum of storage deviation between the WET and conventional methods (WOET). Results of the WOET method showed that the sum of stage deviations were 87.42 cm (2.868 ft.), 231.80 cm (7.605 ft.), and 284.50 cm (9.333 ft.) in the testing, planning, and recorded periods, respectively. These stage deviations are equivalent in the same order to 29, 76, and 93 percent of the lake volume. In general, the WET method not only was applicable to compute the water budget for the lake but also reduced the sum of storage deviation by about 42, 31, and 49 percent, respectively, in those three periods. The storage deviation in WET method was reduced on an average to about 2 percent each year in all three periods, and the deviations were scattered more randomly than in WOET.  相似文献   

20.
ABSTRACT: Detailed measurements of soil moisture and ET in semiarid forest environments have not been widely reported in the literature. In this study, soil moisture and water balance components were measured over a four‐year period on a semiarid ponderosa pine hillslope, with evapotranspiration (ET) determined as the residual of measured precipitation, runoff, and change in soil moisture storage. ET accounts for approximately 95 percent of the water budget and has a distinctly bimodal annual pattern, with peaks occurring after spring snowmelt and during the late summer monsoon season, periods that coincide with high soil moisture. Weekly growing season ET rates determined by the hillslope water balance are found to be invariably below calculated potential rates. Normalized ET rates are linearly correlated (r2= 0.62) with soil moisture; therefore, a simple linear relation is proposed. Growing season soil moisture dynamics were modeled based on this relation. Results are in fair agreement (r2= 0.63) with the observed soil moisture data over the four growing seasons; however, for two dry summers with little surface runoff, much better results (r2 > 0.90) were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号