首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Cultures of asexually reproducing populations of the oligochaete Paranaislitoralis (Müller) collected from six different patches (3 to 50 m apart) on an intertidal mud flat in Flax Pond, New York, on two occasions, June and October 1993, showed significant differences among lines in life span, number of offspring produced, and in finite rate of increase (λ). Although growth rates were significantly lower in October than in June, they were always positive (λ > 1) in the laboratory cultures reared in field-collected sediment, while field data show that the densities of P. litoralis decreased sharply in summer and autumn from a seasonal high in early June. Cultures of worms reared at high densities without renewal of sediment crashed, and effects on individuals were irreversible: worms from late (declining) stages of population growth had a significantly higher mortality and lower reproduction than worms from earlier stages, also when transferred to high-quality food. Genetical analysis using RAPDs (random amplified polymorphic DNA) confirmed the existence of several clones of P. litoralis in our cultures. Experiments where parent and offspring were cultured in sediments of different qualities showed clone–environment interactions in the number of asexual offspring produced, but not in age at first reproduction. Clones also differed in that some showed significant parental effects of sediment quality on life-history characteristics while other clones did not. Our results indicate that P.litoralis populations in Flax Pond are not an example of a population subdivided into a set of permanent source and sink subpopulations, but rather an example of a continuously shifting mosaic of local growth conditions. Received: 21 April 1997 / Accepted: 3 September 1997  相似文献   

2.
Body volume growth rate, dry tissue weight, organic carbon content, and nucleic acid content (RNA and DNA) of individual Capitella sp. I were measured after 14 d of exposure to natural sediment, sediment contaminated with fluoranthene (in acetone) and sediment treated with acetone only. Exposure to 101 μg fluoranthene g−1 sediment dry wt during 2 weeks reduced body volume specific growth rate by 50%. Dry tissue weight and carbon content were also lower in fluoranthene-exposed worms. However, when corrected for differences in body volume, worms from fluoranthene-contaminated sediment had a higher dry weight and carbon content per unit body volume than worms from the control and acetone treatments. Part, but not all, of the reduction in body volume growth rate in response to fluoranthene may have been due to a reduction in tissue water content. The correlation between RNA:DNA ratio (which has previously been used as a predictor of recent growth rate) and worm growth rate was weak in the control group and was significantly influenced by sediment treatment. Not only did the fluoranthene-exposed worms have a lower growth rate than expected based on their RNA:DNA ratio, but analysis of this group separately indicated that measured growth rate was independent of the RNA:DNA ratio. Our results not only confirm previous indications of a weak relationship between nucleic acid content and actual growth, but indicate that empirical, predictive relationships between these variables measured under favorable growth conditions should not be extrapolated to predict growth under toxicant-stressed conditions. Received: 6 April 1997 / Accepted: 7 May 1997  相似文献   

3.
The relationship between somatic growth and incremental growth of otoliths of Pacific saury, Cololabis saira (Brevoort), larvae under different temperature conditions was studied in the laboratory for three age groups (0 to 9, 10 to 20 and 20 to 30 d posthatch). Larvae were incubated from hatching to 9 d at 24, 20, and 16 °C. Further, larvae initially reared at an ambient temperature of 21.7 °C were transferred to experimental temperatures of 22, 18, and 14 °C on Day 10 and reared to Day 20 and similarly from Day 20 and reared to Day 30 posthatch. Growth trajectories of larvae sampled at the end of the three experiments were back-calculated using the biological intercept method and compared to the measured values 0 and 5 d after the start of each experiment. Back-calculated knob length at the different temperatures indicated no significant difference to the measured knob lengths except for the cases at 20 °C from hatching to 9-d-old larvae and at 14 °C from 20- to 30-d-old larvae. The close correlation between somatic and otolith growth shown in this study indicated the feasibility of estimating the growth history of Pacific saury larvae using otolith readings. Received: 14 April 1999 / Accepted: 27 October 1999  相似文献   

4.
Polychaetes belonging to the genus Capitella are often present in high numbers in organic-rich sediments polluted with, e.g., oil components, and Capitella spp. may have a great impact on the biogeochemistry of these sediments. We examined the influence of Capitella sp. I on microbial activity in an organic-rich marine sediment contaminated with the polycyclic aromatic hydrocarbon, fluoranthene. Capitella sp. I were added to microcosms (10 000 ind m−2) and the impact of a pulse-sedimentation of fluoranthene-contaminated sediment (3 mm layer) was studied for a period of 12 d after sedimentation. The sediment oxygen uptake and total sediment metabolism (TCO2 production) increased in cores with worms (71 to 131%), whereas the anaerobic activity, measured as sulfate reduction rate 12 d after sedimentation, was lower compared to cores without worms. The effect of fluoranthene on sulfate reduction was most pronounced in the presence of worms, with a 34% reduction versus 16% in cores without worms. The reduced sulfur pools in cores with worms were smaller than in cores without worms, suggesting that the reduced anaerobic activity was caused by increased oxidation of the sediment, which may favor O2 and other electron-acceptors (e.g. NO3 , Fe3+, Mn4+) in organic matter decomposition. The sediment oxygen uptake and TCO2 production did not show significant changes due to fluoranthene treatment, indicating that these parameters were either less sensitive to fluoranthene stress or recovered more rapidly (i.e. within 48 h) than sulfate reduction rates. Bioturbation by Capitella sp. I altered the depth profile of fluoranthene such that fluoranthene was found in deeper sediment layers (down to 2 cm) where diffusional loss and microbial breakdown probably are reduced relative to surface layers. In cores without worms, fluoranthene was found down to 1 cm, with 75% remaining in the upper 5 mm. Received: 5 December 1996 / Accepted: 11 February 1997  相似文献   

5.
Eggs and larvae of the Senegal sole, Solea senegalensis Kaup, were reared from fertilization until the end of metamorphosis, which occurs by Day 17 after hatching at 19.5 °C. Changes in energy content and biomass quality were studied in terms of dry weight and of carbon, nitrogen and energy content. S. senegalensis spawned eggs of about 1 mm diameter which hatched 38 h after fertilization. Average dry weight of individual eggs was 46 μg, the chorion accounting for about 18% of total dry weight. Gross energy of recently fertilized sole eggs was approximately 1 J egg−1. From fertilization to hatching, eggs lost 8% of their total energy (chorion not included). After hatching, larvae lost 14% of their initial energy until the start of feeding which occurred about 48 h afterwards. The principal components catabolized during embryogenesis were carbon-rich compounds that decreased by 26%, while nitrogen-rich compounds decreased by only 10% and were practically unaltered from hatching to the start of feeding. Feeding larvae displayed constant growth during the period studied (specific growth rate on a dry weight basis was 0.26 d−1). The relative proportion of carbon and nitrogen content revealed an accumulation of high energy compounds in the days before metamorphosis. By Day 14, the energy content reached values similar to those of recently hatched embryos, but decreased again during metamorphosis. Received: 10 June 1998 / Accepted: 28 January 1999  相似文献   

6.
 Effect of salinity on the feeding rate and parthenogenetic reproduction of asexual females of the cladoceran Diaphanosoma celebensis Stingelin was studied. Short-term (10 h) grazing experiments were conducted using Isochrysis galbana as feed at 5, 17, 25 and 30 psu salinity. Gut pigment concentration showed a significantly higher rate of feeding at lower salinities. Survival, growth, maturity attainment and neonate production of asexual females reared in the above four test salinities indicated preference for lower salinities (5 and 17 psu). The mean size of adult females decreased from 909 to 593 μm, mean life span from 24 to 5 d, mean neonate production from 12 to 2 and mean size of neonates from 434 to 400 μm as the salinity increased from 5 to 30 psu. Salinity variations also affected the size and age of primiparous females. Resting egg formation and sexual reproduction did not occur at the tested salinities. The results indicate that D. celebensis is adapted to low saline, estuarine environments. Received: 14 January 2000 / Accepted: 24 March 2000  相似文献   

7.
The effects of the widespread polycyclic aromatic hydrocarbon (PAH) fluoranthene on sediment-processing rates in the infaunal polychaete Capitella spp. were investigated by comparing five populations of this deposit-feeding species complex: Capitella sp. I from New York, USA; Capitella sp. M from Milos, Greece; Capitella sp. S from Sylt, Germany; and two unidentified Capitella populations from salmon farm sediments –Capitella population K from Kilmelford, Scotland and Capitella population C from Cranford, Ireland. Replicate worms from each strain were exposed to 0, 10, and 95 μg (g dry wt sediment)−1 fluoranthene (=μg/g fluoranthene) for a period of 16 days. Initial and final wet and dry weights (mg) of worms and worm-specific growth rates (WSGRs) were calculated. Sediment processing was measured as the sum of the total dry weight of pellets produced during the experiment, and we estimated size-specific processing rates (SSPRs) as a measure of sediment processed per mg worm dry weight per day. The five populations of Capitella spp. differed significantly in body size, WSGR, and sediment-processing rates. Capitella sp. I grew faster than all of the other populations. Capitella population C and Capitella population K from fish farm sediments, with the largest body lengths (up to 52.0 ± 27.2 mm), had the highest processing rates, whereas the small Capitella sp. S (up to 17.1 ± 5.6 mm) had the lowest. There were also significant differences in SSPR among populations with Capitella sp. I having a higher SSPR (about 12 × body wt/day) than Capitella population C (about 5 × body wt/day) and Capitella population K (3 × body wt/day). The fluoranthene concentrations used in the present study, while representing moderately to highly contaminated conditions, had only marginal effects on sediment-processing and growth rates of all of the Capitella populations examined. Processing of contaminated sediment by Capitella spp. may be important in the remediation of PAH-contaminated sediment. Received: 16 January 2000 / Accepted: 28 August 2000  相似文献   

8.
In order to estimate growth rates based on biochemical indices of the liver of wild Japanese flounder (Paralichthys olivaceus), juveniles were reared at six ration levels (0, 0.5, 2, 4, 6 and 8% body weight day−1) in the laboratory for 14 days, and the relationship between their growth rates and biochemical indices (RNA/DNA, protein/DNA, triglyceride/DNA, phospholipid/DNA and cathepsin D activities) were determined. Positive and approximately linear relationships were seen between growth rates and the indices of RNA/DNA, protein/DNA and phospholipid/DNA. The triglyceride/DNA ratio decreased with increasing growth rates up to approximately 1% body weight day−1, then increased linearly with increasing growth rates. There was no significant correlation between growth rates and cathepsin D activity, and the highest values were obtained in the starved fish. Compared with laboratory-reared specimens, wild specimens of similar sizes were found to have significantly larger livers. The RNA/DNA, protein/DNA and phospholipid/DNA ratios of wild specimens fell in a broad range between ration groups of reared juveniles. The protein/DNA ratios of wild specimens were low and outside the range of the reared juveniles at six ration levels. In contrast, the levels of cathepsin D activity of wild fish were highest compared to the reared fish. Estimated growth rates of wild fish from the RNA/DNA, protein/DNA and phospholipid/DNA regressions obtained from the rearing experiment were 1.66, −1.74 and 0.10% day−1, respectively. Based on our results, the RNA/DNA index may be regarded as the most valid and reliable growth estimator. It is noted that the larger liver size, the lower liver protein/DNA ratio and the unexpectedly high level of cathepsin D activities of wild specimens found in this study may reflect the different metabolic conditions of fish reared in the laboratory compared to those collected in the field. Received: 29 February 2000 / Accepted: 26 August 2000  相似文献   

9.
Nephropsnorvegicus (L.) were subjected to 8 h of emersion, either between layers of seawater-soaked hessian with periodical (20 min) flushes of seawater (high humidity, HH) or to unprotected emersion (low humidity, LH). Blood ammonia levels rose during emersion in both groups but reached higher levels under LH conditions. Ammonia efflux rates after re-immersion were higher than those of control prawns, and amounts of ammonia excreted at such times were considerably higher than those calculated to have accumulated in the blood during emersion. Possible explanations for such differences are discussed. C aO2 and C vO2 decreased rapidly to ca. 10% normoxia values within 2 h of HH and LH emersion and remained low throughout the remaining emersion time. Emersion-induced tissue hypoxia increased blood concentrations of glucose and lactate. Lactate accumulation was higher during LH emersion, compared with HH emersion. Blood pH dropped ca. 0.40 units but increased again after 2 h of re-immersion. Acidosis was probably related more to respiratory difficulties (CO2 accumulation) than to lactate accumulation, as blood lactate values remained high after 2 h of re-immersion. The ability of N. norvegicus to cope with emersion appears to be little influenced by high humidity conditions. Received: 26 June 1996 / Accepted: 5 August 1996  相似文献   

10.
A key regulatory mechanism underlying the switch between aerobic and anaerobic metabolism amongst anoxia-tolerant marine molluscs is reversible protein phosphorylation. To assess the role of cAMP-dependent protein kinase (PKA) in aerobic–anaerobic transitions, the effects of anoxia on the activity and subcellular distribution of PKA were assessed in foot and hepatopancreas of the marine periwinkle, Littorina littorea. Exposure to N2 gas at 5 °C caused a rapid decline in the percentage of total enzyme present as the free catalytic subunit (PKAc) in both tissues; the percentage of PKAc fell from ∼30% in controls to 3% after 1 h anoxia and remained low over 72 h. Total PKA also fell by 30% after 72 h anoxia in hepatopancreas but rebounded during aerobic recovery. Freezing at −8 °C elicited parallel results for both percentage of PKAc and total PKA, suggesting that PKA responses to freezing were stimulated by the ischemia that develops when hemolymph freezes. Anoxia also led to a shift in PKA subcellular distribution in hepatopancreas (but not in foot), the percentage of total PKA activity associated with the nuclear fraction dropping from 25% in controls to 8% in 12 h anoxic snails with opposite changes in the cytosolic fraction. The catalytic subunit (PKAc) of foot PKA was purified to a final specific activity of 63.5 nmol phosphate transferred per minute per milligram protein. Enzyme properties included a molecular weight of 33 to 35 kDa, an activation energy from Arrhenius plots of 65.1 ± 4.8 kJ mol−1, and substrate affinity constants of 151 ± 6 μM for the phosphate acceptor, Kemptide, and 72 ± 9 μM for Mg.ATP. Activity was strongly reduced by mammalian PKA inhibitors (H-89, PKA-I), by neutral chloride salts (I50 values 165 to 210 mM) and by NaF (I50 62 mM). Reduced PKA activity under anoxic or freezing conditions would facilitate the observed suppression of the activities of numerous enzymes that are typically PKA-activated and thereby contribute to the overall anoxia-induced metabolic rate depression. Received: 19 November 1997 / Accepted: 30 September 1998  相似文献   

11.
Larvae of the marine cheilostomatid bryozoan Bugula neritina (L.) were prevented from settling for 1, 4 and 8 h by mechanical agitation, following which settlement and metamorphosis success were examined. Settlement rates were significantly affected by swimming time, which decreased from 100% after 2 h to 93.7 ± 4.3% after 8 h. Similarly, metamorphosis to the feeding ancestrula was significantly impaired following a swimming time of 8 h, declining from 93.7 ± 4.3% after 1 h to 65.9 ± 7.0% after 8 h. The resultant colonies grew well for the first 3 wk, following which time, growth patterns became erratic. Growth rate was in all cases highly variable, and did not correlate with enforced swimming times. Larval protein composition was examined after 1, 4 and 8 h swimming time, and post-larval composition 1, 2, 5, 24 and 48 h after settlement using sodium-dodecyl-sulphate polyacrylamide-gel electrophoresis (SDS-PAGE). Individual protein content was measured using a densitometer. Larvae did not consume protein during swimming, however a protein measuring 170 kdaltons was consumed during metamorphosis. These results are discussed in the context of larval settlement and energetics. Received: 19 July 1998 / Accepted: 3 December 1998  相似文献   

12.
J. J. Fritz 《Marine Biology》1999,133(3):509-518
This study addresses carbon fixation and coccolith production and detachment in the cosmopolitan species Emiliania huxleyi (Lohmann) Hay et Mohler, under conditions of nitrate limitation and high light typical of surface water in the ocean. Cells were grown under controlled growth conditions using nitrate-limited cyclostat cultures at four growth rates between 0.2 and 0.7 d−1 in 1995. Both photosynthesis and calcification rates increased with growth rate. Coccolith dimensions remained constant at all cell growth rates. Specific rates of coccolith detachment also increased linearly with cell-specific growth rate at a ratio not significantly different from 1.00. Estimates of coccolith carbon content decreased with increasing cell growth rates. Received: 18 March 1997 / Accepted: 8 October 1998  相似文献   

13.
Survival, developmental and consumption rate (Artemia nauplii ingested per day) as well as predation efficiency (ingested per available Artemia nauplii) were studied during the larval development of the shallow-water burrowing thalassinid Callianassa tyrrhena (Petagna, 1792), which exhibits an abbreviated type of development with only two zoeal stages and a megalopa. The larvae, hatched from berried females from S. Euboikos Bay (Aegean Sea, Greece), were reared at 10 temperature–food density combinations (19 and 24 °C; 0, 2, 4, 8 and 16 Artemia nauplii d−1). Enhanced starvation resistance was evident: 92 and 58% of starved zoeas I molted to zoea II, while metamorphosis to megalopa was achieved by 76 and 42% of the hatched zoeas at 19 and 24 °C, respectively. The duration of both zoeal stages was affected by temperature, food density and their interaction. Nevertheless, starvation showed different effects at the two temperatures: compared to the fed shrimp, the starved zoeae exhibited accelerated development at 19 °C (8.4 d) but delayed metamorphosis at 24 °C (5.9 d). On the other hand, both zoeal stages were able to consume food at an increased rate as food density and temperature increased. Predation efficiency also increased with temperature, but never exceeded 0.6. Facultative lecithotrophy, more pronounced during the first zoeal stage of C.tyrrhena, can be regarded as an adaptation of a species whose larvae can respond physiologically to the different temperature–food density combinations encountered in the wide geographical range of their natural habitat. Received: 28 February 1998 / Accepted: 21 October 1998  相似文献   

14.
Profiles of diarrhetic shellfish poisoning (DSP) toxins produced throughout the growth cycle and the cell cycle of the toxigenic marine dinoflagellate Prorocentrum lima were studied in triplicate unialgal batch cultures. Cells were pre-conditioned at 18 ± 1 °C, under a photon flux density (PFD) of 90 ± 5 μmol m−2 s−1 on a 14 h light:10 h dark photoperiod. In exponential growth phase, cultures were synchronized in darkness for 17 d. After dark synchronization, cultures were transferred back to the original photoperiod regime. Cells were harvested for DSP toxin analysis by LC-MS (liquid chromatography with mass spectrometry), and double-stranded (nuclear) DNA was quantified by flow cytometry. The cell populations became asynchronous within approximately 3 d after transition from darkness to the 14 h light:10 h dark photoperiod. This may be due to the prolonged division cycle (5 to 7 d) that is not tightly phased by the photoperiod. Unlike other planktonic Prorocentrum spp., cytokinesis in P. lima occurred early in the dark and ceased by “midnight”. Cellular levels of the four principal DSP toxins, okadaic acid (OA), OA C8-diol-ester (OA-D8), dinophysistoxin-1 (DTX1) and dinophysistoxin-4 (DTX4), ranged from 0.37 to 6.6, 0.02 to 1.5, 0.04 to 2.6, and 1.8 to 7.8 fmol cell−1, respectively. No toxin production was evident during the extended period of dark synchronization nor during the initial period when NH4 was consumed as the major nitrogen source. Soon after the cells were returned to the 14 h light:10 h dark cycle and they began to take up NO3, cellular levels of all four toxins gradually increased. This increase in DSP toxins usually occurred in the light, marked by a rise in DTX4 levels that preceded an increase in the cellular concentration of OA and DTX1 (delayed by 3 to 6 h). Thus, DTX4 synthesis is initiated in the G1 phase of the cell cycle and persists into S phase (“morning” of the photoperiod), whereas OA and DTX1 production occurs later during S and G2 phases (“afternoon”). No toxin production was measured during cytokinesis, which happened early in the dark. The evidence indicates that toxin synthesis is restricted to the light period and is coupled to cell cycle events. Received: 3 September 1998 / Accepted: 30 March 1999  相似文献   

15.
Deposit-feeders can respond to seasonal fluctuations in food concentration both functionally (e.g. by adjusting feeding rates) and physiologically (e.g. by changing the concentration of bacteriolytic agents in gut fluids). Laboratory feeding experiments were carried out (11 to 21 July 1997) with the arenicolid polychaete worm Abarenicola pacifica (Healy and Wells). Objectives were to test for separate and interactive effects of sediment food concentration and temperature (6, 11, and 16 °C) on deposit-feeder functional (feeding rates) and physiological (bacteriolytic activity of gut fluids) responses. Food concentration was varied experimentally using sieved (1 mm) natural sediments (Md φ=2.00; 0.6% organic) mixed with combusted (500 °C, 8 h) sediments for final concentrations of 25, 50, and 100% natural sediment. Sediment food quality was measured as: (1) bioavailable amino acids (EHAA), (2) chlorophyll a (chl a), and (3) bacterial abundance. Feeding rates were inferred from egestion rates (ER, g h−1) and analyzed with respect to worm size. Bacteriolytic activity of midgut fluids was assayed turbidimetrically against two bacterial isolates, after worms had fed on experimental sediments for 15 d. Temperature and food concentration both significantly affected feeding rates, with maxima occurring at 50 and 100% natural sediment mixtures, and at high (16 °C) temperature. ER was positively, but not significantly correlated with EHAA and chl a; a positive, significant correlation was detected between ER and sediment bacterial abundance. Overall, functional responses agreed with earlier compensatory intake models for deposit-feeders. However, the size and direction of these responses was temperature-sensitive, suggesting that these models need to be adjusted for changes in absorption rates. No effects of ambient temperature or food concentration on bacteriolytic rates were observed, possibly due to compensatory mechanisms or the presence of multiple bacteriolytic agents in gut fluids. Received: 28 June 1999 / Accepted: 14 March 2000  相似文献   

16.
We analysed growth of the Antarctic bryozoan Melicerita obliqua (Thornely, 1924) by x-ray photography and stable isotope analysis. M. obliqua colonies form one segment per year, thus attaining maximum length of about 200 mm within 50 years. In the Weddell and Lazarev Seas, annual production/biomass ratio of M. obliqua is 0.1 yr−1, which is in the range of other Antarctic benthic invertebrate populations. Production amounts to 3.34 mg Corg m−2 yr−1 and 90.6 mg ash m−2 yr−1 on the shelf (100 to 600 m water depth), and to 0.13 mg Corg m−2 yr−1 and 36.8 mg ash m−2 yr−1 on the slope (600 to 1250 m water depth). Received: 27 February 1998 / Accepted: 8 May 1998  相似文献   

17.
The transparent goby Aphia minuta (Risso, 1810) is one of the main target species of the small-scale fishery off the Island of Majorca. Otolith microstructure and length-frequency analysis were used to study the age and growth of this species during the 1982/1983 and 1992/1993 fishing seasons. Daily periodicity of increment formation was determined by experiments with marked otoliths in individuals maintained in captivity. The length range of the catches during the 11 yr period was between 12 and 49 mm, with a main distribution (89%) between 24 and 40 mm. Otolith age-readings indicate that the population exploited in the commercial fishery consists of seven age-groups (2 to 8 mo old), with a very high proportion of individuals (95%) between 3 and 6 mo old. Population growth-curves revealed no differences between males and females. The growth parameters for the whole population are: asymptotic length, L = 53.69 mm; growth coefficient, K = 2.23 yr−1; theoretical age at length zero, t 0 = −0.005 yr. Those individuals of A. minuta caught in Majorca during the winter period reached a maximum age of 7 or 8 mo. Received: 30 December 1996 / Accepted: 16 April 1997  相似文献   

18.
An experiment under laboratory conditions was conducted to test the hypothesis that development and growth of copepodite stages in Calanus chilensis are temperature-dependent and not subject to food shortage in the upwelling area of the Humboldt Current, northern Chile. Field data obtained from June 1994 to May 1995 in Bahía Mejillones (23°S) were used to define four combinations of temperature and food under which copepodites were reared from Stage CIII to adulthood. The high temperature was 18.1 °C and the low temperature 13.1 °C, whereas the high food level was in the range of 6.8 to 24.8 μg l−1 chlorophyll a and the low level 1.0 to 6.8 μg l−1 chlorophyll a. As food a mixture of three unknown species of phytoflagellates and the diatom Navicula cryptocephala was used. This phytoplankton was initially obtained from the same sampling sites as copepods and kept in f/2 media at stable levels and composition throughout the experiment. The development rate (1/t), estimated from the time (t) elapsing between Stage CIV and adult, was significantly affected by both temperature and food, although low-food effects were much more remarkable. Low-food conditions also significantly reduced body length and “structural” (lipid-discounted) body mass at adulthood, while temperature only affected body length. The weight-specific growth rate was also affected by food and temperature, but again food effects were much more drastic. The results indicate that C. chilensis is a highly sensitive species to lack of food, and is possibly subject to food shortage during its annual cycle in the coastal upwelling area of northern Chile. Food limitation may help explain the seasonal pattern of adult size reported by previous studies in the area and the lack of consistence between the number of generations predictable from a temperature-dependent model and that observed in the field during the annual cycle. Received: 10 September 1996 / Accepted: 29 October 1996  相似文献   

19.
The euryalinid brittle-star (snake star) Astrobrachion constrictum (Farquhar) lives coiled around the branches of black coral (Antipathes fiordensis) colonies. Twenty-two vertical transects, 10 m wide by 30 m deep, were swum in Doubtful Sound over a 2.5 yr period from 1993 to 1995. Numbers, disc diameters and colour morphotypes of brittle-stars inhabiting coral colonies were recorded. 36.3% of the coral colonies >200 mm tall (n = 292) hosted ≥1 Astrobrachion constrictum (range 0 to 12). Overall, the population was patchily distributed on the available coral habitat. The dark red colour morphotype of A. constrictum was most common (87%, n = 279) followed by the yellow, striped, and then spotted varieties. The population was comprised mainly of large (≥10 mm disc diam) individuals, and juveniles were rarely encountered, indicating low rates of recruitment or a high mortality of recruits. Disc-diameter data gathered from this and previous studies indicated that growth in A. constrictum is initially rapid, with individuals reaching a disc diameter of 15 mm in ≃2.5 yr; growth decreases with age, as in other deep-sea ophiuroids. Growth rate within years, however, was not constant, with faster growth in the spring/summer. Maximum size for A. constrictum is reached in ≃8 yr at ˜23 mm disc diam. Anecdotal evidence indicates that A. constrictum may not be confined solely to black coral colonies. Received: 25 September 1996 / Accepted: 16 October 1996  相似文献   

20.
The effect of photosynthetic available radiation (PAR) levels, light quality, ultraviolet (UV) radiation, and temperature on photosynthesis, growth, and chlorophyll fluorescence was evaluated in red and green morphotypes of the rhodophyte Kappaphycus alvarezii (Doty) Doty under controlled conditions. Chlorophyll a and phycoerythrin (PE) levels were similar in the red and green morphotypes cultured under the same conditions, but phycocyanin (PC) and allophycocyanin (APC) levels were 2-fold greater in the green than in the red morphotype. Pigment characterization indicated that the overexpression of PC and APC masked the red pigmentation in the green morphotype. Maximum photosynthesis and photosynthetic efficiency were similar between the two morphotypes assayed at a wide temperature range, which was reflected in the similar growth rates observed in outdoor culture systems. In the green morphotype, photosynthetic efficiency increased 2-fold relative to the red morphotype when assayed with red light (λ > 600 nm), indicating that photosynthetic characteristics are modified as a result of pigment variation in these morphotypes. Such increase in photosynthetic efficiency in the green morphotype, however, did not result in greater growth rates when cultured under white light. Short exposure to high levels of solar radiation (UV-A + UV-B + PAR), and filtered solar radiation (UV-A + PAR or PAR) decreased effective quantum yield (ΔF/F m′) in both morphotypes. The reduction of ΔF/F m′ values in the red and green morphotypes was accounted for by high levels of PAR and not by the UV-A + UV-B + PAR and UV-A + PAR treatments. Photoinhibition caused by UV-A, UV-B, or PAR was completely reversed within 30 h after incubations. Recovery rates from photoinhibition, however, were significantly reduced in the green morphotype when incubated with UV-B radiation. The results here suggest that the overexpression of pigments do not necessarily increase photosynthesis and growth in these morphotypes. Received: 19 June 2000 / Accepted: 28 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号