首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Kim do H  Mulholland JA  Ryu JY 《Chemosphere》2007,67(9):S135-S143
Polychlorinated naphthalenes (PCNs) formed along with dibenzo-p-dioxin and dibenzofuran products in the slow combustion of dichlorophenols (DCPs) at 600 degrees C were identified. Each DCP reactant produced a unique set of PCN products. Major PCN congeners observed in the experiments were consistent with products predicted from a mechanism involving an intermediate formed by ortho-ortho carbon coupling of phenoxy radicals; polychlorinated dibenzofurans (PCDFs) are formed from the same intermediate. Tautomerization of the intermediate and H2O elimination produces PCDFs; alternatively, CO elimination to form dihydrofulvalene and fusion produces naphthalenes. Only trace amounts of tetrachloronaphthalene congeners were formed, suggesting that the preferred PCN formation pathways from chlorinated phenols involve loss of chlorine. 3,4-DCP produced the largest yields of PCDF and PCN products with two or more chlorine substituents. 2,6-DCP did not produce tri- or tetra-chlorinated PCDF or PCN congeners. It did produce 1,8-DCN, however, which could not be explained.  相似文献   

2.
Addink R  Altwicker ER 《Chemosphere》2001,44(6):1361-1367
Na37Cl was used to study the role of chlorine in the formation of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) from carbon. Adding Na37Cl to fly ash showed that this compound was a (relatively) poor chloride source; chlorine naturally present on the ash - which could include both chlorine in residual carbon and (metal) chlorides - was found to be ca. 17x more reactive. When both Na37Cl and CuCl2 were added to aqueous extracted fly ash, the percentage of 37Cl from Na37Cl included in PCDD/F increased, compared to the combination of Na37Cl/fly ash. When Na37Cl and CuCl2 were exchanged in water, followed by evaporation of the solvent, and mixed with aqueous extracted fly ash, the percentage of 37Cl included in PCDD/F was much higher. Apparently, direct transfer of 37Cl from CuCl2 to carbon and PCDD/F was much faster than transfer of 37Cl- from Na37Cl via a metal chloride (such as CuCl2) to carbon and PCDD/F. In addition to chlorine in PCDD/F originating from exchanged NaCl/CuCl2, chloride left on the fly ash after aqueous extraction and chlorine present in residual carbon could also have been incorporated in PCDD/F.  相似文献   

3.
Unintentionally produced persistent organic pollutants (UP-POPs) including polychlorinated dibenzo-p-dioxins, and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs) were characterized and quantified in stack gas and fly ash from the second ventilation systems in five typical converters in five different steelmaking plants. The 2378-substituted PCDD/Fs (2378-PCDD/Fs) and dioxin-like PCB (dl-PCBs) toxic equivalents (TEQs) were 1.84–10.3 pg WHO-TEQ Nm?3 in the stack gas and 5.59–87.6 pg WHO-TEQ g?1 in the fly ash, and the PCN TEQs were 0.06–0.56 pg TEQ Nm?3 in the stack gas and 0.03–0.08 pg TEQ g?1 in the fly ash. The concentrations of UP-POPs in the present study were generally lower than those in other metallurgical processes, such as electric arc furnaces, iron ore sintering, and secondary metallurgical processes. Adding scrap metal might increase UP-POP emissions, indicating that raw material composition was a key influence on emissions. HxCDF, HpCDF, OCDF, HpCDD, and OCDD were the dominant PCDD/Fs in the stack gas and fly ash. TeCB and PeCB were dominant in the stack gas, but HxCB provided more to the total PCB concentrations in the fly ash. The lower chlorinated PCNs were dominant in all of the samples. The 2378-PCDD/F, dl-PCB, and PCN emission factors in stack gases from the steelmaking converter processes (per ton of steel produced) were 1.88–2.89, 0.14–0.76, and 229–759 μg t?1, respectively.  相似文献   

4.
A series of verification tests were carried out in order to confirm that polychlorinated naphthalenes (PCNs) contained in synthetic rubber products (Neoprene FB products) and aerosol adhesives, which were accidentally imported into Japan, could be thermally destroyed using an industrial waste incinerator. In the verification tests, Neoprene FB products containing PCNs at a concentration of 2800 mg/kg were added to industrial wastes at a ratio of 600 mg Neoprene FB product/kg-waste, and then incinerated at an average temperature of 985 °C. Total PCN concentrations were 14 ng/m3N in stack gas, 5.7 ng/g in bottom ash, 0.98 ng/g in boiler dust, and 1.2 ng/g in fly ash. Destruction efficiency (DE) and destruction removal efficiency (DRE) of congener No. 38/40, which is considered an input marker congener, were 99.9974 and 99.9995 %, respectively. The following dioxin concentrations were found: 0.11 ng-TEQ/m3N for the stack gas, 0.096 ng-TEQ/g for the bottom ash, 0.010 ng-TEQ/g for the boiler dust, and 0.072 ng-TEQ/g for the fly ash. Since the PCN levels in the PCN destruction test were even at slightly lower concentrations than in the baseline test without PCN addition, the detected PCNs are to a large degree unintentionally produced PCNs and does not mainly stem from input material. Also, the dioxin levels did not change. From these results, we confirmed that PCNs contained in Neoprene FB products and aerosol adhesives could be destroyed to a high degree by high-temperature incineration. Therefore, all recalled Neoprene FB products and aerosol adhesives containing PCNs were successfully treated under the same conditions as the verification tests.  相似文献   

5.
PCDD/PCDF were determined in solid samples from wood combustion. The samples included grate ashes, bottom ashes, furnace ashes as well as fly and cyclone ashes. The solid waste samples were classified into bottom and fly ash from native wood and bottom and fly ash from waste wood. For each of the four classes concentration distribution patterns from individual congeners, the sums of PCDD/PCDF and the international toxicity equivalents (I-TEQ) values are given. The I-TEQ levels of fly ash from waste wood burning can be approximately up to two thousand times higher than the values from fly ashes of natural wood. The I-TEQ levels in bottom ashes from waste wood combustion systems are as low as the corresponding ashes from the combustion of native wood. Grate ash samples from waste wood combustion systems with low carbon burnout show high levels of PCDD/PCDF.  相似文献   

6.
Suspended sediments from the Detroit River were collected in 1999 and 2000 using sediment traps at sites ranging from western Lake Erie to southern Lake St. Clair and analyzed to determine the spatial distributions of contaminants including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs), dioxin-like PCBs (DLPCBs) and polychlorinated naphthalenes (PCNs). Concentrations of all three contaminant classes were clearly elevated at sites in the lower reaches of the river in the Trenton Channel. The potential influence of the Trenton Channel as a source of contamination to western Lake Erie was further evidenced by PCDD/PCDF homologue profiles, which indicated a contribution from chemical manufacturing in addition to the normal background combustion profile. Toxic equivalents (TEQs) for PCDDs/PCDFs generally exceeded those for DLPCBs; combined total TEQs in July 2000 for these two compound classes ranged from 2.30 pg/g in southern Lake St. Clair to 306 pg/g at a station just downstream of the outflow of Monguagon Creek in the Trenton Channel. The spatial distribution of PCN contamination was similar to that of PCDDs/PCDFs and DLPCBs, with the highest level of total PCNs (8200 ng/g) detected at a site in the Trenton Channel near Elizabeth Park; TEQs for PCNs in the Trenton Channel ranged from 73 to 3300 pg/g. The data indicate that PCNs represent a significant contribution to dioxin-like biological activity in Detroit River suspended sediments.  相似文献   

7.
The effect of reaction time on formation of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) was studied under laboratory conditions in the system containing municipal waste incineration fly ash, activated carbon and copper chloride dihydrate at 300 degrees C in 99.999% N2 and N2 + 10% O2 atmosphere. The concentrations of tetra- to octa-chlorinated isomers as well as I-TEQ concentrations of toxic congeners are reported. The mechanism of PCDD and PCDF formation from chlorophenols and chlorinated biphenyls is discussed in the light of the time changes of PCDD/PCDF ratios.  相似文献   

8.
Abad E  Caixach J  Rivera J 《Chemosphere》1999,38(1):109-120
Polychloronaphthalenes (PCN) were identified and quantified in emission samples collected from five different municipal waste incinerators (MWI). Polychlorodibenzo-p-dioxins (PCDD) and polychlorodibenzofurans (PCDF) were also determined to find a possible relationship between these classes of organochlorinated compounds. The analyses of PCDD/PCDF and PCN were carried out by high resolution gas chromatography coupled with high resolution mass spectrometry using a positive electron ionization source and operating in the selected ion monitoring analyzer mode (HRGC-HRMS/EI(+)-SIM). The total levels of PCN varied from 1.08 up to 21.36 ng/Nm3 (mono- to octachlorinated) and 0.33 to 5.72 ng/Nm3 (tetra- to octachlorinated), whereas the levels of PCDD/PCDF ranged between 1.14 and 276.26 ng/Nm3 (0.01 and 5 ng I-TEQ/Nm3), depending on the type of the MWI. These findings do not corroborate a PCN and PCDD/PCDF correlation.  相似文献   

9.
The formation of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls and benzenes in de novo synthesis experiments have been studied on model fly ashes with a wide range of matrices. The model fly ash consisted of 18 selected matrices with the addition of CuCl(2) x 2H(2)O, activated charcoal and NaCl. The studied matrices were not restricted to the commonly investigated matrices with defined chemical composition (silica gel, alumina, florisil) and industrially produced adsorbents with silicate structures (diatomaceous earths), but also included natural occurring matrices (clays, kaolin, bentonite and feldspars). In addition fly ashes from a hazardous waste incinerator were included in the study for comparison. Differences in the isomer composition (homologue profiles and isomer patterns) of the substances formed by de novo synthesis experiments are discussed in dependence on the chemical composition of the studied matrices. The de novo synthesis experiments on matrices with silicate structures resulted in high concentration of mainly perchlorinated aromatic compounds while for other matrices in particular alkaline matrices a homologue shift to lower chlorinated homologues and lower formation rates were found. The paper discusses the resulting PCDD/PCDF pattern and compares them to the PCDD/PCDF profile found in naturally occurring kaolin and ball clay (illite).  相似文献   

10.
Dechlorination of commercial mixtures of polychlorinated biphenyls (PCB) as well as polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) on extracted and non-extracted fly ash obtained from municipal waste incinerator (MWI) was studied in closed systems under nitrogen atmosphere at temperatures of 260°C and 340°C. Decomposition results (given as the difference between PCB or PCDD/F molar amounts before and after the experiment (in %) due predominantly to dechlorination reactions) and detoxification data (expressed similarly but related to toxic PCB and PCDD/F congeners only and given in I-TEQ units) are reported. Detoxification of Delor 105/80T at 260°C and 340°C at a loading of 0.65 wt% was 99.48% and 100%, respectively. The decomposition of Delor 103 at 340°C and for the loading of 0.75 wt% corresponded to 99.99%. The detoxification capability of PCDD/Fs on extracted and non-extracted fly ash for loading of 130 and 264 ng/0.4 g of fly ash at 340°C made 96 and 98%, respectively.  相似文献   

11.
Nine typical waste incinerating plants were investigated for polychlorinated naphthalene (PCN) contents in their stack gas. The incinerators investigated include those used to incinerate municipal solid, aviation, medical, and hazardous wastes including those encountered in cement kilns. PCNs were qualified and quantified by isotope dilution high resolution gas chromatography–high resolution mass spectrometry techniques. An unexpectedly high concentration of PCNs (13,000 ng?Nm?3) was found in the stack gas emitted from one waste incinerator. The PCN concentrations ranged from 97.6 to 874 ng?Nm?3 in the other waste incinerators. The PCN profiles were dominated by lower chlorinated homologues, with mono- to tetra-CNs being the main homologues present. Furthermore, the relationships between PCNs and other unintentional persistent organic pollutants involving polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, hexachlorobenzene, and pentachlorobenzene were examined to ascertain the closeness or otherwise of their formation mechanisms. A good correlation was observed between ΣPCN (tetra- to octa-CN) and ΣPCDF (tetra- to octa-CDF) concentrations suggesting that a close relationship may exist between their formation mechanisms. The results would provide an improved understanding of PCN emissions from waste incinerators.  相似文献   

12.
The difference of polychlorinated dibenzofurans (PCDF) isomer patterns between stoker type incinerators and some fluidized bed incinerators (FBI) is a key to understand the formation mechanisms in both types of incinerators. The total yield and the isomer patterns of PCDF, polychlorinated biphenyls (PCB), polychlorinated naphthalenes (PCN), and polychlorinated benzenes (PCBz) formed via de novo synthesis from polycyclic aromatic hydrocarbons (PAH) indicate that chlorinated aromatics in the FBI are formed as a result of PAH breakdown. The detailed analysis of the isomer patterns of PCDF, PCB and PCN gives a first insight into the transformation mechanism of the PAHs and the sequence of degradation, chlorination and oxygen insertion. The major chlorination takes part at the position of the C-C cleavage during degradation of the PAHs. Further chlorination of the hydrogen position of the former PAH takes part preferably in ortho-position to this chlorination or is directed by incorporated oxygen. A perylene structure in soot is proposed as basis for the observed PCDF pattern in the FBI. Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated phenols (PxCP) were formed in lower concentrations from the de novo experiments indicating an additional formation pathway for these compounds in the FBI.  相似文献   

13.
Weber R  Hagenmaier H 《Chemosphere》1999,38(3):529-549
The pyrolysis of chlorinated phenates at a temperature of about 280 degrees C results in the formation of definite chlorinated dibenzodioxin (PCDD) congeners [1-3]. It is shown that in gas phase reactions chlorophenols react in the presence of oxygen above 340 degrees C not only to PCDD but also to chlorinated dibenzofurans (PCDF). The mechanism of this reaction of chlorophenols to PCDD and PCDF was elucidated. In a first step phenoxyradicals are formed which are capable of forming PCDDs and PCDFs. This is confirmed by the oxygen dependency of the reaction. In an argon atmosphere no dimerization of chlorophenols could be observed at 420 degrees C. By the identification of intermediates and by analyzing the PCDF isomers formed from individual chlorophenols the reaction pathway is elucidated. As intermediates in the formation of PCDFs polychlorinated dihydroxybiphenyls (DOHB) were identified. These are most likely formed by the dimerization of two phenoxy radicals at the hydrogen substituted carbons in ortho-positions under simultaneous movement of the hydrogen atoms to the phenolic oxygen PCDDs are formed in the gas phase via ortho-phenoxyphenols (POP) analogous to the pyrolysis of phenates, but due to the radical mechanism in the first condensation step to POPs not only a chlorine atom is capable for substitution but also the hydrogen atoms. The formation of the DOHBs and their condensation to PCDFs and hydroxylated PCDFs as well as the ratio of PCDD to PCDF formed show a strong dependency on the reaction temperature, the substitution pattern of the chlorophenols and the oxygen concentration.  相似文献   

14.
Technical polychlorinated byphenyl (PCB) preparations--Delors 103, 104, 105, and 106--produced in the former Czechoslovakia were analyzed for their chlorobiphenyl (CB), chloronaphthalene (PCN) and chlorinated dibenzofuran (PCDF) composition and content using high resolution gas chromatography-mass spectrometry techniques. The congener patterns of Delors 103, 104, 105, and 106 resembled Aroclors 1242, 1248, 1254, and 1260. Delors contained PCNs and PCDFs, as impurities, at microgram per gram concentrations. Concentrations of PCNs and PCDFs in Delors were greater than those found in the corresponding Aroclors. The potential for the emissions of PCNs and PCDFs from Delor was estimated to be 3680 and 860 kg, respectively. Non- and mono-ortho PCBs were the major contributors to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents in Delor mixtures.  相似文献   

15.
测定了流化床垃圾焚烧炉焚烧产生的飞灰、烟尘和烟气中的2,3,7,8位氯取代二噁英同类物的含量及其毒性当量。结果表明,产生的二噁英主要存在于飞灰中,烟气中的含量很少。飞灰中二噁英总浓度和毒性当量分别为8.44ng/g和0.80ng/g,经过布袋除尘器后的烟尘和烟气中二噁英的浓度之和与毒性当量之和分别为0.34ng/m^3和0.02ng/m^3,而布袋除尘器前的烟尘和烟气中二噁英的浓度之和与毒性当量之和分别为40.78ng/m^3和3.0ng/m^3。飞灰和烟尘中2,3,7,8位氯取代二噁英同类物的分布相似,但是与烟气中2,3,7,8位氯取代二噁英同类物的分布差别较大。通过了解有毒二噁英同类物的分布,可以进一步优化流化床垃圾焚烧炉的焚烧条件,降低二噁英的排放量,减少垃圾焚烧对环境的污染。  相似文献   

16.
Control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in emissions and thermal residues from incinerators has been a cause of public concern for more than one decade. Recently, several studies showed that other persistent organic pollutants (POPs) such as coplanar polychlorinated biphenyls (co-PCBs) also have dioxin-like activity and are released from incinerators. Therefore, the present study was aimed at making a risk assessment about dioxin-like activity in extracts of thermal waste residues (e.g. combustion gas; fly ash, slag) from incineration and melting processes in Germany and Japan. For this purpose, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), coplanar polychlorinated biphenyls (co-PCBs), polychlorinated naphthalenes (PCNs) and polyaromatic hydrocarbons (PAHs) were analyzed by chemical analysis. Additionally, 2, 3, 7, 8-TCDD equivalents (EROD-TEQs) were determined by in vitro Micro-EROD bioassay using rat H4IIE hepatoma cells. EROD-TEQs could be correlated to I-TEQ values (from PCDD/Fs/co-PCBs) analyzed by chemical analysis resulting in a maximal sixfold higher estimate. Our study indicates minor influences of co-PCBs, PAHs and PCNs to the sum of dioxin-like toxicity in the extracts of thermal waste residues as determined here. Furthermore, we showed that the levels of dioxins and co-PCBs contained in slag from melting processes and bottom ashes from incineration processes were lower by 1-2 orders of magnitude than that in fly ash.  相似文献   

17.
Llobet JM  Falcó G  Bocio A  Domingo JL 《Chemosphere》2007,66(6):1107-1113
The concentrations of polychlorinated naphthalenes (PCNs) were determined in samples of 14 edible marine species (sardine, tuna, anchovy, mackerel, swordfish, salmon, hake, red mullet, sole, cuttlefish, squid, clam, mussel and shrimp), which are widely consumed by the population of Catalonia, Spain. The daily intake of PCNs associated with this consumption was also determined. A total of 42 composite samples were analyzed by HRGC/HRMS. The highest PCN levels (ng/kg of fresh weight) were found in salmon (227) followed by mackerel (95) and red mullet (68), while the lowest levels of total PCNs corresponded to shrimp (4.9) and cuttlefish (2.7). With the exception of cephalopods and shellfish species, in which tetra-CN was the predominant homologue, penta-CN (60%) was the predominant contributor to total PCNs. For a standard male adult, PCN intake through the consumption of edible marine species was 1.53 ng/day. The highest contributions to this intake (ng/day) corresponded to salmon (0.41), sole (0.28) and tuna (0.24). Concerning health risks, species-specific TEFs such as those reported by WHO and NATO for PCDD/Fs and dioxin-like PCBs are not currently available for PCN congeners. Although in general terms the results of the present study do not seem to suggest specific risks derived from exposure to PCNs through fish and seafood consumption, to establish the contribution of individual PCN congeners to total TEQ is clearly necessary for the assessment of human health risks.  相似文献   

18.
On-line detectable indicator parameters in the flue gas of municipal solid waste incinerators (MSWI) such as chlorinated benzenes (PCBz) are well known surrogate compounds for gas-phase PCDD/PCDF concentration. In the here presented work derivation of indicators is broadened to the detection of fly and boiler ash fractions with increased PCDD/PCDF content. Subsequently these fractions could be subject to further treatment such as recirculation in the combustion chamber to destroy their PCDD/PCDF and other organic pollutants' content. Aim of this work was to detect suitable on-line detectable indicator parameters in the gas phase, which are well correlated to PCDD/PCDF concentration in the solid residues. For this, solid residues and gas-phase samples were taken at three MSWI plants in Bavaria. Analysis of the ash content from different plants yielded a broad variation range of PCDD/PCDF concentrations especially after disturbed combustion conditions. Even during normal operation conditions significantly increased PCDD/PCDF concentrations may occur after unanticipated disturbances. Statistical evaluation of gas phase and ash measurements was carried out by means of principal component analysis, uni- and multivariate correlation analysis. Surprisingly, well known indicators for gas-phase PCDD/PCDF concentration such as polychlorinated benzenes and phenols proved to be insufficiently correlated to PCDD/PCDF content of the solid residues. Moreover, no single parameter alone was found appropriate to describe the PCDD/PCDF content of fly and boiler ashes. On the other hand, multivariate fitting of three or four parameters yielded convenient correlation coefficients of at least r=0.8 for every investigated case. Thereby, comprehension of plant operation parameters such as temperatures and air flow alongside concentrations of inorganic compounds in the gas phase (HCl, CO, SO2, NOx) gave the best results. However, the suitable set of parameters suited best for estimation of PCDD/PCDF concentration in solid residues has to be derived anew for each individual plant and type of ash.  相似文献   

19.
Formation and destruction of PCDD/F inside a grate furnace   总被引:1,自引:0,他引:1  
Hunsinger H  Jay K  Vehlow J 《Chemosphere》2002,46(9-10):1263-1272
Formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans PCDD/F during the combustion process was investigated experimentally in a pilot plant. All important process steps like the burnout of the fuel bed on the grate, the burnout of the flue gas inside the combustion chamber, the heat recovery in a boiler as well as influences of the fuel composition are described in detail.

High concentrations especially of PCDF are formed during the burnout of the fuel bed. The formation reaction is mainly influenced by the fuel composition and the burnout characteristic of the fuel bed. Fuels with low chlorine and low metal content (Cu) result only in negligible concentrations of PCDD/F.

Under stable combustion conditions characterized by an excellent flue gas burnout PCDD/F will almost be completely destroyed already inside the combustion chamber. “Cold strands” of unburned flue gas (high CO concentrations) caused by disturbed combustion conditions will result in high concentrations of PCDD and especially of PCDF in the raw gas.

A second place of PCDD/F formation is the well-known boiler section. Here fly ash deposits containing residual carbon (mainly soot particles) are the source for the formation reaction. Under stationary effective combustion conditions, they are dominant for PCDD/F concentrations in the raw gas over a very long period of time.

Stationary efficient flue gas burnout (especially soot) together with effective boiler cleaning will guaranty low concentrations of PCDD/F in the flue gas in front of the flue gas cleaning system.  相似文献   


20.
Electric arc furnaces (EAF) are well recognized as significant sources of dioxins. EAFs have also been speculated to be sources of polychlorinated naphthalenes (PCNs) due to the close correlation between dioxin and PCN formation. However, assessment on PCN emissions from EAFs has not been carried out. The primary aim of this preliminary study is to identify and characterize the atmospheric emission of PCNs from EAFs. In this preliminary study, stack gas samples from two typical EAFs with different scales (EAF-1, 160?t batch(-1); and EAF-2, 60?t batch(-1)) were collected by automatic isokinetic sampling technique, and PCN congeners in samples were analyzed by isotope dilution high-resolution gas chromatography combined with high-resolution mass spectrometry method. Emission concentrations of PCNs were 458 and 1,099?ng?m(-3) for EAF-1 and EAF-2, respectively. The emission factors of PCNs to air were 21.6 and 30.1?ng toxic equivalent t(-1) for EAF-1 and EAF-2, respectively, which suggested that EAF is an important source of PCN release. With regard to the characteristics of PCNs from EAFs, lower chlorinated homologues were dominant. The PCN congeners comprised of CN27/30, CN52/60, CN66/67, and CN73 were the most abundant congeners for tetra-, penta-, hexa-, and hepta-chlorinated homologues, respectively. EAFs were identified to be an important PCN source, and the obtained data are useful for developing a PCN inventory. The congener profiles of PCNs presented here might provide helpful information for identifying the specific sources of PCNs emitted from EAFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号