首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tropospheric sulfate radiative forcing has been calculated using an interactive chemistry scheme in LMD-GCM. To estimate the radiative forcing of sulfate aerosol on climate, a consistent interaction between atmospheric circulation and radiation computation has been allowed in LMD-GCM. The model results indicate that the change in the sulfate aerosols number concentration is negatively correlated to the indirect radiative forcing. The model simulated annual mean direct radiative forcing ranges from −0.1 to −1.2 W m−2, and indirect forcing ranges from −0.4 to −1.6 W m−2. The global annual mean direct effect estimated by the model is −0.48 W m−2, and that of indirect is −0.68 W m−2.  相似文献   

2.
Smog chamber/FTIR techniques were used to study the relative reactivity of OH radicals with methanol, ethanol, phenol, C2H4, C2H2, and p-xylene in 750 Torr of air diluent at 296±2 K. Experiments were performed with, and without, 500–8000 μg m−3 (4000–50 000 μm2 cm−3 surface area per volume) of NaCl, (NH4)2SO4 or NH4NO3 aerosol. In contrast to the recent findings of Oh and Andino (Atmospheric Environment 34 (2000) 2901, 36 (2002) 149; International Journal of Chemical Kinetics 33 (2001) 422) there was no discernable effect of aerosol on the rate of loss of the organic compounds via reaction with OH radicals. Gas kinetic theory arguments cast doubt upon the findings of Oh and Andino. The available data suggest that the answer to the title question is “No”. As part of this work the rate constants for reactions of OH radicals with methanol, ethanol, and phenol in 750 Torr of air at 296 K were determined to be: kOH+CH3OH=(8.12±0.54)×10−13, kOH+C2H5OH=(3.47±0.32)×10−12 and kOH+phenol=(3.27±0.31)×10−11 cm3 molecule−1 s−1.  相似文献   

3.
Over the western North Pacific, a large amount of land aerosols from Asian-Pacific countries is transported by the prevailing westerlies. This transport makes the radiative characteristics of these aerosols diverse, particularly when one compares those characteristics over the coastal sea with those over the open sea. In this paper we discuss a method that uses satellite data to obtain the single-scattering albedo (ω) and asymmetry factor (g) of atmospheric aerosols for two large-scale subdivisions—the coastal sea (within 250 km from the coast) and the open sea (the remaining area)—over the western North Pacific (110°E–180°, 20°N–50°N). Our estimation method uses satellite measurements, obtained over a six-year period (2000–2005), of aerosol optical depth (AOD) and shortwave fluxes at both the surface and the top of the atmosphere (TOA); the measurements are obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES). For the two subdivisions, the estimated annual means of (ω,g) at 630 nm are significantly different: (0.94, 0.65) over the coastal sea and (0.97, 0.70) over the open sea. From a quantitative viewpoint, this result indicates that in comparison with aerosols over the open sea, those over the coastal sea show greater absorption and lesser forward scattering of solar radiation. The estimated optical properties are responsible for the aerosol surface cooling observed by MODIS and CERES, which is approximately 138 and 108 W m−2 per AOD over the coastal sea and open sea, respectively.  相似文献   

4.
With the development of satellite experiments supplementary and validating ground-based measurements are gaining growing importance for the inference and evaluation of radiation-related aerosol parameters. Both kinds of measurements have been conducted and interpreted mainly under globally or locally restricted aspects for a limited time period only. Results are presented from four rural regions (coastal zone, lowlands, highlands, high mountain); they are column-related aerosol parameters, deduced from monitoring programs of spectral aerosol optical depth (AOD) as well as almucantar sky irradiance measurements. After 13 years of continuous measurements of trends and variations in aerosol optical depths, these results are based on 5 years of data collection (1994–1998). There are significant differences among the parameters of the four regions when related to the inversion method of the AOD spectra. A clear interdependence was found between all column-related parameters and the real part of the refractive index, which in turn depends on the chosen retrieval method. The differences among the four regions are characterized mainly by their different altitudes, with relative humidity being responsible for their internal variation. An increase in the relative humidity from 35 to 55–60% influences the most interesting parameters such as refractive index (real part), hemispheric backscattered fraction b, and direct radiative forcing ΔF as follows: The real part of the refractive index decreases from 1.6±0.05 to 1.42±0.04, b decreases by 8–10%, and, due to the increase in AOD, ΔF increases by about 20% in the spectral region 0.4–1.0 μm. The quantities of the parameters depend on the retrieval methods too.  相似文献   

5.
In this paper, the continuous (1994–2001) and discrete air sample (1991–2001) measurements of atmospheric CH4 from the Waliguan Baseline Observatory located in western China (36°17′N, 100°54′E, 3816 m asl) are presented and characterized. The CH4 time series show large episodic events on the order of 100 ppb throughout the year. During spring, a diurnal cycle with average amplitude of 7 ppb and a morning maximum and late afternoon minimum is observed. In winter, a diurnal cycle with average amplitude of 14 ppb is observed with an afternoon maximum and morning minimum. Unlike most terrestrial observational sites, no obvious diurnal patterns are present during the summer or autumn. A background data selection procedure was developed based on local horizontal and vertical winds. A selected hourly data set representative of “baseline” conditions was derived with approximately 50% of the valid hourly data. The range of CH4 mixing ratios, annual means, annual increases and mean annual cycle at Waliguan during the 1992–2001 were derived from discrete and continuous data representative of “baseline” conditions and compared to air samples collected at other Northern Hemisphere sites. The range of CH4 monthly means of 1746–1822 ppb, average annual means of 1786.7±10.8 ppb and mean annual increase of 4.5±4.2 ppb yr−1 at Waliguan were inline with measurements from sites located between 30° and 60°N. There were variations observed in the CH4 annual increase patterns at Waliguan that were slightly different from the global pattern. The mean CH4 annual cycle at Waliguan shows an unusual pattern of two gentle peaks in summer and February along with two small valleys in early winter and spring and a mean peak-to-peak amplitude of 11 ppb, much smaller than amplitudes observed at most other mid- and high-northern latitude sites. The Waliguan CH4 data are strongly influenced by continental Asian CH4 emissions and provide key information for global atmospheric CH4 models.  相似文献   

6.
Bacteria inactivation and natural organic matter oxidation in river water was simultaneously conducted via photo-Fenton reaction at “natural” pH (6.5) containing 0.6 mg L−1 of Fe3+ and 10 mg L−1 of H2O2. The experiments were carried out by using a solar compound parabolic collector on river water previously filtered by a slow sand filtration system and voluntarily spiked with Escherichia coli. Fifty five percent of 5.3 mg L−1 of dissolved organic carbon was mineralized whereas total disinfection was observed without re-growth after 24 h in the dark.  相似文献   

7.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

8.
Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00′N, 121°32′E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m2 g−1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m2 g−1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3–2.3 m2 g−1), which were similar to the previous measurements with high degree of temporal resolution.  相似文献   

9.
The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from −12 to −8 W m−2 was mainly distributed over the Sichuan Basin and the eastern China’s coastal regions in the all-sky case at TOA, and the forcing effect ranging from −8 to −4 W m−2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan  相似文献   

10.
The atmospheric reaction of the methylthiyl radical (CH3S) with O3 was investigated as a function of temperature (259–381 K), in the pressure range of 25–300 Torr, using the technique of laser photolysis/laser-induced fluorescence. The resulting Arrhenius expression, with an uncertainty of ±2σ, was k1(T=259–381 K)=(1.02±0.30)×10−12 exp[(432±77) K/T] cm3 molecule−1 s−1. The obtained rate constant k1 was independent of pressure over the limited range employed. Our results are compared with the previous studies carried out, at single temperature and as a function of temperature, by different techniques.  相似文献   

11.
Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to ?2.4 W m?2 and 0.24 W m?2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is ?0.43 W m?2 and 0.05 W m?2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (?2.2 W m?2 and 0.33 W m?2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.  相似文献   

12.
Atmospheric transport and deposition of polychlorinated biphenyls (PCBs) is an important problem for ecosystems around the world. Data from several monitoring networks demonstrate that atmospheric PCB concentrations are dramatically elevated in urban areas compared to rural or background regions, such that these urban emissions of PCBs support the regional and global transport and deposition of PCBs to more remote areas. Identifying and controlling the sources of urban atmospheric PCBs is thus essential in minimizing the regional and global transport and deposition of these compounds. From December 1999 to November 2000, gas-phase PCB concentrations were measured at two monitoring locations, 8 km apart, within the New York City metropolitan area, at Jersey City and Bayonne, NJ. Concentrations, congener patterns, and temporal patterns of PCBs differ dramatically at the two sites, suggesting that a significant source of atmospheric PCBs exists within 8 km of the Bayonne site, resulting in spikes in gas-phase PCB concentration at Bayonne that are not observed at Jersey City. The Regional Atmospheric Model System (RAMS) coupled with the Hybrid Particle and Concentration Transport model (HYPACT) was used to estimate that the PCB source near Bayonne emits a flux of ΣPCBs on the order of 100 g d−1. Extrapolation of this source magnitude to the area of New York City suggests that this urban area emits at least 300 kg yr−1 ΣPCBs to the regional atmosphere, similar in magnitude to the flow of ΣPCB out of the Upper Hudson River into the New York/New Jersey Harbor.  相似文献   

13.
The interaction of N2O5 with dispersed samples of Arizona Test Dust (ATD), Calcite (CaCO3) and quartz (SiO2) was investigated at varying relative humidity using an aerosol flow reactor. Reactive uptake coefficients, γ, obtained at close to zero relative humidity were (4.8 ± 0.7) × 10−3 for CaCO3, (8.6 ± 0.6) × 10−3 for Quartz and (9.8 ± 1.0) × 10−3 for ATD. In the case of calcite, evidence was obtained for an enhanced rate of uptake at relative humidities above ≈ 50%. The results are compared to literature values obtained using bulk substrates and to previous aerosol uptake data on Saharan dust.  相似文献   

14.
Simultaneous size distributions and Fourier transform infrared (FTIR) extinction spectra have been measured for several representative components of mineral dust aerosol (quartz, calcite, and dolomite) in the fine particle size mode (D=0.1–1 μm). Optical constants drawn from the published literature have been used in combination with the experimentally determined size distributions to simulate the extinction spectra. In general, Mie theory does not accurately reproduce the peak position or band shape for the prominent IR resonance features in the 800–1600 cm−1 spectral range. The resonance peaks in the Mie simulation are consistently blue shifted relative to the experimental spectra by 20–50 cm−1. Spectral simulations, derived from a simple Rayleigh-based analytic theory for a “continuous distribution of ellipsoids” particle shape model, better reproduce the experimental spectra, despite the fact that the Rayleigh approximation is not strictly satisfied in these experiments. These results differ from our previous studies of particle shape effects in silicate clay mineral dust aerosols where a disk-shaped model for the particles was found to be more appropriate.  相似文献   

15.
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis–Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d− 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d− 1. Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d− 1. The stable isotope-based biodegradation rate constant of 0.0027 d− 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d− 1. With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor εfield of − 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.  相似文献   

16.
Successions of lake ecosystems from clear-water, macrophyte-rich conditions into turbid states with abundant phytoplankton have taken place in many shallow lakes in China. However, little is know about the change of carbon fluxes in lakes during such processes. We conducted a case study in Lake Biandantang to investigate the change of carbon fluxes during such a regime shift. Dissolved aquatic carbon and gaseous carbon (methane (CH4) and carbon dioxide (CO2)) across air–water interface in three sites with different vegetation covers and compositions were studied and compared. CH4 emissions from three sites were 0.62±0.36, 0.70±0.36, and 1.31±0.57 mg m−2 h−1, respectively. Correlation analysis showed that macrophytes, rather than phytoplankton, directly positively affected CH4 emission. CO2 fluxes of three sites in Lake Biandantang were significantly different, and the average values were 77.8±20.4, 52.2±14.1 and 3.6±26.8 mg m−2 h−1, respectively. There were an evident trend that the larger macrophyte biomass, the lower CO2 emissions. Correlation analysis showed that in different sites, dominant plant controlled CO2 flux across air–water interface. In a year cycle, the percents of gaseous carbon release from lake accounting for net primary production were significantly different (from 39.3% to 2.8%), indicating that with the decline of macrophytes and regime shift, the lake will be a larger carbon source to the atmosphere.  相似文献   

17.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

18.
The main purpose of this study was to perform an evaluation of the particles’ optical parameters’ influence on surface solar UV-B (280–315 nm) irradiance in Córdoba, Argentina. To achieve this objective UV-B irradiance dataset, AERONET (AErosol RObotic NETwork) database, and TUV (Tropospheric Ultraviolet and Visible) model were used to analyze the effects of aerosols on surface irradiance on cloudless days during specific days of winter and spring of the period 1999–2006. Together with a direct observer, total irradiance (300–3000 nm) measurements were used as an ancillary tool to verify the cloudless condition. Every year, during this period, important reductions in surface irradiance are observed due to the aerosol load. Aerosols were incorporated in the model through the aerosol optical depth at 340 nm, the asymmetry parameter at 440 nm, and the single scattering albedo at 440 nm, all of them provided by AERONET Córdoba-CETT site. These factors vary from near to zero up to 1.4, from 0.56 up to 0.83 and from 0.43 up to 0.99, respectively. The behaviors of these factors along the year are analyzed considering the meteorology of Córdoba. When AERONET data are included in the TUV model they allow an accurate simulation of the UV-B irradiance, making the agreement with the experimental measurements substantially better. Only a small differences (±2%) remains, which can be attributed to diverse factors. As the AERONET site is 20 km away from the irradiance measurement site, these results show the regional character of the aerosols in Córdoba, although small contributions of urban aerosols are not discarded. An episode of high aerosol and pollutants laden due to fires in the surrounding hills is briefly analyzed. A set of additional studies are needed to describe comprehensively the characteristics and behavior of the Córdoba aerosols. Some of them are being already carried out.  相似文献   

19.
The presence of antibiotics in the aquatic environment has raised concerns due to the potential risk for the emergence or persistence of antibiotic resistance. Antibiotics are often poorly degraded in conventional wastewater treatment plants. In this study, sonolysis at 520 kHz and 92 W L−1 was used for the degradation of the fluoroquinolone antibiotic ciprofloxacin. In a first experiment at pH 7, 57% of the ciprofloxacin (15 mg L−1) was degraded after 120 min of ultrasonic irradiation at 25 °C. pH proved to be an important parameter determining the degradation rate, since the pseudo first order degradation constant increased almost fourfold when comparing treatment at pH 7 (0.0058 min−1) and pH 10 (0.0069 min−1) with that at pH 3 (0.021 min−1). This effect can be attributed to the degree of protonation of the ciprofloxacin molecule. The BOD/COD ratio of the solutions, which is a measure for their biodegradability, increased from 0.06 to 0.60, 0.17, and 0.18 after 120 min of irradiation depending on the pH (3, 7, and 10, respectively). The solution treated at pH 3 can even be considered readily biodegradable (BOD/COD > 0.4). The antibiotic activity against Escherichia coli (G−) and Bacillus coagulans (G+) of the treated solutions also reduced after sonolysis. The highest decrease was again found when irradiated at pH 3. In contrast, ecotoxicity of the solutions to the alga Pseudokirchneriella subcapitata increased 3- to 10-fold after 20 min of treatment, suggesting the formation of toxic degradation products. The toxicity slowly diminished during further treatment.  相似文献   

20.
Chromium (Cr) is a well-known human carcinogen and a potential reproductive toxicant, but its contribution to ocean pollution is poorly understood. The aim of this study was to provide a global baseline for Cr as a marine pollutant using the sperm whale (Physeter macrocephalus) as an indicator species. Biopsies were collected from free-ranging whales around the globe during the voyage of the research vessel The Odyssey. Total Cr levels were measured in 361 sperm whales collected from 16 regions around the globe detectable levels ranged from 0.9 to 122.6 μg Cr g tissue−1 with a global mean of 8.8 ± 0.9 μg g−1. Two whales had undetectable levels. The highest levels were found in sperm whales sampled in the waters near the Islands of Kiribati in the Pacific (mean = 44.3 ± 14.4) and the Seychelles in the Indian Ocean (mean = 19.5 ± 5.4 μg g−1). The lowest mean levels were found in whales near the Canary Islands (mean = 3.7 ± 0.8 μg g−1) and off of the coast of Sri Lanka (mean = 3.3 ± 0.4 μg g−1). The global mean Cr level in whale skin was 28-times higher than mean Cr skin levels in humans without occupational exposure. The whale levels were more similar to levels only observed previously in human lung tissue from workers who died of Cr-induced lung cancer. We conclude that Cr pollution in the marine environment is significant and that further study is urgently needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号