首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Cape Fear is an outdoor 7 × 7 m2 hillslope laboratory located at the University of Tuscia, Viterbo, Italy, and is equipped with real-time monitoring sensors used to analyse runoff generation. In this paper, hydrological phenomena that occurred during Cape Fear’s first 2 years of operation are reported to provide insight into the basic dynamics underlying the hydrological response at the hillslope scale. Based on our findings, surface and subsurface runoff are likely driven by rainfall-threshold phenomena, and evapotranspiration phenomena account for more than 70% of rainfall water input. Future studies will investigate the threshold relationship between rainfall and runoff.  相似文献   

2.
To assesses the effect of geomorphology, topography, and vegetation changes on spatial pattern of soil organic carbon (C) and total nitrogen (N) in sand dunes, we used the quantitative methods to examine the spatial heterogeneity of vegetation cover, soil organic C, and total N in an 11-year naturally restored mobile dune (RMD11) and a 20-year naturally restored mobile dune (RMD20) that had been fenced to exclude grazing in Horqin Sandy Land, northern China. Our results showed that the vegetation cover, plant density, species number and diversity, soil organic C, and total N increased from RMD11 to RMD20 and increased from the 50 × 50-m plot (crest) to the 100 × 100-m plot (slope) in each dune. Geostatistical analysis showed that the spatial structural variance accounted for the largest proportion of the total sample variance in vegetation cover, soil organic C, and total N in each dune plot. Calculated spatial autocorrelation ranges of vegetation cover, soil organic C, and total N increased from RMD11 to RMD20, indicating that longer time since vegetation restoration results in a more homogeneous distribution of vegetation cover, soil organic C, and total N in sand dunes. In addition, the spatial continuity of vegetation cover, soil organic C, and total N decreased from the 50 × 50-m plot (crest) to the 100 × 100-m plot (slope) in each dune. These results suggest that the spatial distribution of soil organic C and total N in sand dunes is associated closely with geomorphic position related to the dune crest and slope, relative elevation of sampling site, and vegetation cover. Understanding the principles of this relationship between them may guide strategies for the conservation and management of semiarid dune ecosystems.  相似文献   

3.
Arid and semi-arid shrublands have significant biological and economical values and have been experiencing dramatic changes due to human activities. In California, California sage scrub (CSS) is one of the most endangered plant communities in the US and requires close monitoring in order to conserve this important biological resource. We investigate the utility of remote-sensing approaches—object-based image analysis applied to pansharpened QuickBird imagery (QBPS/OBIA) and multiple endmember spectral mixture analysis (MESMA) applied to SPOT imagery (SPOT/MESMA)—for estimating fractional cover of true shrub, subshrub, herb, and bare ground within CSS communities of southern California. We also explore the effectiveness of life-form cover maps for assessing CSS conditions. Overall and combined shrub cover (i.e., true shrub and subshrub) were estimated more accurately using QBPS/OBIA (mean absolute error or MAE, 8.9 %) than SPOT/MESMA (MAE, 11.4 %). Life-form cover from QBPS/OBIA at a 25?×?25 m grid cell size seems most desirable for assessing CSS because of its higher accuracy and spatial detail in cover estimates and amenability to extracting other vegetation information (e.g., size, shape, and density of shrub patches). Maps derived from SPOT/MESMA at a 50?×?50 m scale are effective for retrospective analysis of life-form cover change because their comparable accuracies to QBPS/OBIA and availability of SPOT archives data dating back to the mid-1980s. The framework in this study can be applied to other physiognomically comparable shrubland communities.  相似文献   

4.
The estimation of coverage, i.e., the proportion of the total area in a study region covered by a given target class, is essential to many aspects of environmental monitoring. We analyze and compare the efficiency of different sample-based approaches for the estimation of coverage of different land cover classes from aerial imagery in a case study in Lower Saxony, Germany on the basis of the estimated standard errors. A complete delineation of vegetation classes in n?=?279 aerial photo plots of 400 × 400 m thrown onto the study region of 1,117.7 km2 in accordance with a systematic grid is compared to different configurations of line intercept sampling and clusters of points. The observation designs under study are characterized by different complexity and total size of the observation units and therefore also to the efforts related to yield a single observation. Especially for those classes that cover a relatively large proportion of the sampling frame, our results show that difference in performance between the different designs are negligible. A cluster of four transects of 200 m each allows estimating the area of land cover classes with high coverage with nearly similar precision as a complete mapping of fixed area plots of 16 ha each. Clusters of points show unexpected high precision for the estimated coverage of land cover classes with relatively high coverage.  相似文献   

5.
We developed small and mobile open top chambers (mini-OTC) measuring 0.6 m (W)?×?0.6 m (D)?×?1.2 m (H) with an air duct of 0.6 m (W)?×?0.23 m (D)?×?1.2 m (H). The air duct can be filled with activated charcoal to blow charcoal filtered air (CF) into the chamber, as opposed to non-filtered ambient air (NF). Ozone sensitive radish Raphanus sativus cv. Red Chime and rosette pakchoi Brassica campestris var. rosularis cv. ATU171 were exposed to NF and CF in mini-OTCs at different locations in East Asia. A total of 29 exposure experiments were conducted at nine locations, Shanghai, China, Ha Noi, Vietnam, Lampang, Phitsanulok and Pathumtani, Thailand, and Hiratsuka, Kisai, Abiko and Akagi, Japan. Although no significant relationships between the mean concentrations of ambient O3 during the experimental period and the growth responses were observed for either species, multiple linear regression analysis suggested a good relationship between the biomass responses in each species and the O3 concentration, temperature, and relative humidity. The cumulative daily mean O3 (ppb/day) could be indirectly predicted by NF/CF based on the dry weight ratio of biomass, mean air temperature, and relative air humidity.  相似文献   

6.
Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km2 in 1973 to 95.2 km2 in 2011, while that of Lake Cheleleka whose area was 11.3 km2 in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The “change and no change” analysis revealed that more than one third (548.0 km2) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.  相似文献   

7.
漳河上游地区众多的水利工程改变了流域水循环,同时也影响了河流泥沙和生源物质的循环过程。为揭示人类活动干扰下的沉积物中磷的赋存特征,采用改进后的连续化学萃取法分析了漳河上游沉积物中总磷(TP)和磷形态的空间分布特征及其影响因素。研究结果表明,漳河上游沉积物中的TP含量为405.94~899.98 mg/kg,低于我国其他主要河流,接近我国东部平原湖泊含量水平。漳河上游的TP富集指数(PEI)均值为1.15,表明漳河上游富营养化风险较高。可交换态磷(Ex-P)、铁锰螯合态磷(BD-P)、铁铝氧化态磷(NaOH-P)、钙结合态磷(HCl-P)分别占沉积物中TP含量的1.13%、33.96%、12.99%、35.05%。BD-P和HCl-P是沉积物中主要的磷形态,Ex-P的含量最低,NaOH-P的含量波动最大。漳河上游沉积物中,生物可利用磷(BAP)的含量约占TP含量的38.36%~52.04%,其中,清漳干流的BAP含量明显低于其他河段。清漳源头的水土流失及浊漳河的磷输入对漳河上游BAP含量的贡献较大。统计分析显示,漳河上游表层沉积物中,TP和磷形态的空间分布无显著差异,表明以水利工程建设为代表的强烈人类活动对漳河上游沉积物中磷的空间分布的影响不显著。相关性分析和冗余分析表明,沉积物中的NaOH-P含量与沉积物中黏土和粉土的占比有较高的相关性,BD-P和NaOH-P是控制沉积物中BAP构成的重要因素,Fe含量是沉积物中TP含量的主控因子。  相似文献   

8.
Fecal deposits by grazing animals on pasturelands have the potential to leach nutrients to runoff during rainfall events. Unlike croplands, grazing systems such as pasturelands or rangelands have little opportunity to ameliorate nutrient runoff through in-field or edge-of-field management practices. Thus, we investigated the amounts and concentrations of nutrients in overland flow from simulated grazing lands. Two grazing management scenarios were simulated: continuous grazing represented by two sparsely vegetated (SV) plots and rotational grazing represented by two densely vegetated (DV) plots. In addition, there were two control plots. The plots were treated with standard cowpats and rainfall was simulated until overland flow at the edge of the plots reached steady-state. Higher runoff was observed from DV plots (9.97 mm) than SV plots (7.05 mm), but the average total suspended solids concentration in runoff from SV plots was approximately 17 times the concentration observed in runoff from the DV plots. The average total phosphorus (TP) concentrations were highest in plots simulating continuous grazing (5.91 mg L(-1)). In both DV and SV plots at least 83% of the TP was found to be in the dissolved form. The average total Kjeldhal nitrogen (TKN) and total nitrogen concentrations observed in runoff samples from SV plots were 1.25 and 1.46 mg L(-1), respectively. Organic nitrogen comprised 95% of the TKN observed in runoff samples from SV plots. The SV plots have relatively higher loads for those nutrients in the particle associated form compared to DV plots, whereas DV plots had higher loads for those nutrients in the dissolved form. Grazing lands without any additional manure applications were found to release nutrients in high levels and vegetation did not show any effect on removing dissolved nutrients from runoff. These results are useful to inform selection of appropriate management practices to reduce nutrient transport to surface waters in watersheds dominated by grazed lands.  相似文献   

9.
Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km2 have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m3). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10 % to 15 %.  相似文献   

10.
The presence of vegetation in stream ecosystems is highly dynamic in both space and time. A digital photography technique is developed to map aquatic vegetation cover at species level, which has a very high spatial and a flexible temporal resolution. A digital single-lens reflex (DSLR) camera mounted on a handheld telescopic pole is used. The low-altitude (5 m) orthogonal aerial images have a low spectral resolution (red-green-blue), high spatial resolution (~1.9 pixels cm?2, ~1.3 cm length) and flexible temporal resolution (monthly). The method is successfully applied in two lowland rivers to quantify four key properties of vegetated rivers: vegetation cover, patch size distribution, biomass and hydraulic resistance. The main advantages are that the method is (i) suitable for continuous and discontinuous vegetation covers, (ii) of very high spatial and flexible temporal resolution, (iii) relatively fast compared to conventional ground survey methods, (iv) non-destructive and (v) relatively cheap and easy to use, and (vi) the software is widely available and similar open source alternatives exist. The study area should be less than 10 m wide, and the prevailing light conditions and water turbidity levels should be sufficient to look into the water. Further improvements of the image processing are expected in the automatic delineation and classification of the vegetation patches.  相似文献   

11.
Deforestation in the biosphere reserves, which are key Protected Areas has negative impacts on biodiversity, climate, carbon fluxes and livelihoods. Comprehensive study of deforestation in biosphere reserves is required to assess the impact of the management effectiveness. This article assesses the changes in forest cover in various zones and protected areas of Nilgiri Biosphere Reserve, the first declared biosphere reserve in India which forms part of Western Ghats-a global biodiversity hotspot. In this study, we have mapped the forests from earliest available topographical maps and multi-temporal satellite data spanning from 1920’s to 2012 period. Mapping of spatial extent of forest cover, vegetation types and land cover was carried out using visual interpretation technique. A grid cell of 1 km?×?1 km was generated for time series change analysis to understand the patterns in spatial distribution of forest cover (1920–1973–1989–1999–2006–2012). The total forest area of biosphere reserve was found to be 5,806.5 km2 (93.8 % of total geographical area) in 1920. Overall loss of forest cover was estimated as 1,423.6 km2 (24.5 % of the total forest) with reference to 1920. Among the six Protected Areas, annual deforestation rate of >0.5 was found in Wayanad wildlife sanctuary during 1920–1973. The deforestation in Nilgiri Biosphere Reserve is mainly attributed to conversion of forests to plantations and agriculture along with submergence due to construction of dams during 1920 to 1989. Grid wise analysis indicates that 851 grids have undergone large-scale negative changes of >75 ha of forest loss during 1920–1973 while, only 15 grids have shown >75 ha loss during 1973–1989. Annual net rate of deforestation for the period of 1920 to 1973 was calculated as 0.5 followed by 0.1 for 1973 to 1989. Our analysis shows that there was large-scale deforestation before the declaration of area as biosphere reserve in 1986; however, the deforestation has drastically reduced after the declaration due to high degree of protection, thus indicating the secure future of reserve in the long term under the current forest management practices. The present work will stand as the most up-to-date assessment on the forest cover of the Nilgiri Biosphere Reserve with immediate applications in monitoring and management of forest biodiversity.  相似文献   

12.
The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4–12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11–0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (K S ?=?5.25?×?10?4 cm/s). The soil containing 47 % silt, 11 % clay, and 1.54 % organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R 2?=?0.977, RMSE?=?1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42–49 %. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion point was reached within 12 days of elapsed time. This clearly demonstrated poor attenuation capacity of the soil to retard migration of phenol to the groundwater from the surface outfall site. Suitable liner, based on these data, may be designed to inhibit subsurface transport of phenol and thereby to protect precious groundwater from contamination.  相似文献   

13.
Wind erosion is a primary cause of desertification as well as being a serious ecological problem in arid and semi-arid areas across the world. To determine mechanisms for restoring desertified lands, an unrestored shifting sand dune and three formerly shifting sand dunes (desertified lands) that had been enclosed and afforested for 5, 15, and 25 years were selected for evaluation on the south edge of the Tengger Desert, China. Based on sampling heights between 0.2 and 3 m, the critical threshold average wind speed was 6.5 m s?1 at 2 m where the sand transport rate was reduced from 285.9 kg m?2 h?1 on the unrestored dunes to 9.1 and 1.8 kg m?2 h?1 on the sites afforested and enclosed for 5 and 15 years, respectively. The percentage of wind eroded area was reduced from 99.9% on the unrestored dune to 94.5, 9.0, and 0.5% on the sites afforested and enclosed for 5, 15, and 25 years, respectively. Wind erosion was effectively reduced after 15 years. Although there were different driving factors for wind erosion mitigation on the different restoration stages, an increase in the vegetation cover, surface roughness, soil shear strength, soil clay content, organic matter, and reduction in the near-surface wind speed were the primary variables associated with the restoration chronosequence. We conclude that reducing the wind speed and developing a biological crust through vegetation restoration were the critical components for restoration of desertified land.  相似文献   

14.
Of the operations required for reclamation in arid and semi-arid regions, establishing vegetation entails the most uncertainty due to reliance on unpredictable rainfall for seed germination and seedling establishment. The frequency of successful vegetation establishment was estimated based on a land surface model driven by hourly atmospheric forcing data, 7 years of eddy-flux data, and 31 years of rainfall data at two adjacent sites in southern Arizona, USA. Two scenarios differing in the required imbibition time for successful germination were evaluated—2 or 3 days availability of sufficient surface moisture. Establishment success was assumed to occur if plants could germinate and if the drying front in the soil did not overtake the growth of seminal roots. Based on our results, vegetation establishment could be expected to fail in 32 % of years. In the worst 10-year span, six of ten plantings would have failed. In the best 10-year span, only one of ten was projected to fail. Across all assessments, at most 3 years in a row failed and 6 years in a row were successful. Funding for reclamation seeding must be available to allow reseeding the following year if sufficient amount and timing of rainfall does not occur.  相似文献   

15.
The aim of this study is to research natural land cover change caused by the permanent effects of human activities in Duzce plain and its surroundings, and to determine the current status of the land cover. For this purpose, two Landsat TM images were used in the study for the years 1987 and 2010. These images are analysed by using data image processing techniques in ERDAS Imagine©10.0 and ArcGIS©10.0 software. Land cover change nomenclature is classified according to the Coordination of Information on the Environment Level 2 Classification (1—urban fabric, 2—industrial, commercial and transport units, 3—heterogeneous agricultural areas, 4—forests, and 5—inland wetlands). Furthermore, the image analysis results are confirmed by the field research. According to the results, a decrease of 33.5 % was recorded in forest areas from 24,840.7 to 16,529.0 ha; an increase of 11.2 % was recorded in heterogeneous agricultural areas from 47,702.7 to 53,051.7 ha. Natural vegetation, which is the large part of land cover in the research area, has been changing rapidly because of rapid urbanisation and agricultural activities. As a result, it is concluded that significant changes have occurred on the natural land cover between the years 1987 and 2010 in the Duzce plain and its surroundings.  相似文献   

16.
This work aims to assess the spatial distribution and concentration of sulfur in the topsoil layer and to determine the relationships between sulfur concentration, soil pH, soil electrical conductivity, and plant cover at the reforested site of the former sulfur mine (Southern Poland). Soil samples were collected from 0 to 20 cm (topsoil) from a total of 86 sampling points in a regular square grid with sides of 150 m. Plant cover was assayed in circular plots with an area of 100 m2, divided into a woody plant layer and herbaceous plant layer. Soil properties such as particle size distribution, pH in KCl and H2O, soil electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (NT), and total sulfur (ST) were determined. The degree of soil contamination with sulfur was assessed based on the guidelines of the Institute of Soil Science and Plant Cultivation (IUNG), Poland. The results indicate that remediation and application of lime were not fully effective in spatial variation, because 33 points with sulfur contamination above 500 mg kg?1 were observed. These spots occurred irregularly in the topsoil horizons. This high sulfur concentration in the soil did not result in severe acidification (below 4.5) in all cases, most likely due to neutralization from the application of high doses of flotation lime. High vegetative cover occurred at some points with high soil sulfur concentrations, with two points having S concentration above 40,000 mg kg?1 and tree cover about 60%. Numerous points with high soil EC above 1500 μS cm?1 as well as limited vegetation and high soil sulfur concentrations, however, indicate that the reclamation to forest is still not completely successful.  相似文献   

17.
Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m × 23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.  相似文献   

18.
Migration pattern of organochloro pesticide lindane has been studied in groundwater of metropolitan city Vadodara. Groundwater flow was simulated using the groundwater flow model constructed up to a depth of 60 m considering a three-layer structure with grid size of 40?×?40?×?40 m3. The general groundwater flow direction is from northeast to south and southwest. The river Vishwamitri and river Jambua form natural hydrologic boundary. The constant head in the north and south end of the study area is taken as another boundary condition in the model. The hydraulic head distribution in the multilayer aquifer has been computed from the visual MODFLOW groundwater flow model. TDS has been computed though MT3D mass transport model starting with a background concentration of 500 mg/l and using a porosity value of 0.3. Simulated TDS values from the model matches well with the observed data. Model MT3D was run for lindane pesticide with a background concentration of 0.5?μg/l. The predictions of the mass transport model for next 50 years indicate that advancement of containment of plume size in the aquifer system both spatially and depth wise as a result of increasing level of pesticide in river Vishwamitri. The restoration of the aquifer system may take a very long time as seen from slow improvement in the groundwater quality from the predicted scenarios, thereby, indicating alarming situation of groundwater quality deterioration in different layers. It is recommended that all the industries operating in the region should install efficient effluent treatment plants to abate the pollution problem.  相似文献   

19.
Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (<2 mm) compared with stream bank soil (<2 mm) and the <75-μm fraction of stream bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport processes.  相似文献   

20.
Bacterial indicators in relation to tidal variations were studied at five locations for over 2 days covering three tidal cycles in the southwestern region of Gulf of Kachchh, India. Tidal flow here is predominantly in the east west direction and can transport particles up to 32 km. Tidal amplitude appears to play a prominent role in abundance, distribution, and dispersal of coliform bacteria examined during this study. Shallow depths, clayey sediments, strong currents, and higher tidal amplitudes appear to rise by an order of magnitude in total bacterial abundance up to 2.4×104 ml???1 due to their resuspension from the churned up sediments. Dispersal of allochthonous microflora far into coastal marine regions appears to be governed by the strong tidal amplitude in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号