首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Monthly samples were collected in oceanic waters off Discovery Bay, Jamaica, in 60- and 200-m vertical hauls, using 200- and 64-m mesh plankton nets, from June 1989 to July 1991. Length-weight regressions were derived for twelve genera of copepods (R2=0.79 to 0.97). For eight occasions spanning the study period, biomass estimates generated from these length-weight regressions differed by only 3% from direct weight determinations. The mean ash content of copepods was 7.1%, and the energy density was 20.8 kJ g-1 ash-free dry weight (AFDW). Mean annual biomass of the total copepod community in the upper 60 m was 1.83 mg AFDW m-3 (range 1.14 to 2.89 mg AFDW m-3), and for the 200-m water column was 0.96 mg AFDW m-3 (range 0.12 to 1.99 mg AFDW m-3). Estimates of generation times for five common taxa ranged from 16.1 to 33.4 d. None of the taxa investigated displayed isochronal development; in general, stage duration increased in later copepodite stages. Weight increments showed a significant decrease in later copepodite stages, but with strong reversal of the trend from stage 5 to adult female in most species. Daily specific growth rates also declined in later copepodite stages, and ranged from 1.49 d-1 in stage 1–2 Paracalanus/Clausocalanus spp. to 0.04 in stage 5-female of Oithona plumifera. Progressive food limitation of somatic copepodite growth and egg production is postulated. Naupliar production was 50.4 to 59.5% of copepodite production, and egg production was 35.1 to 27.7% of copepodite production in the 60-and 200-m water columns, respectively. Total annual copepod production, including copepodites, nauplii, eggs and exuviae, was 160 kJ m-2 yr-1 for the upper 60 m and 304 kJ m-2 yr-1 for the upper 200 m. Secondary production of the copepod community in oceanic waters off Discovery Bay approaches 50% of the corresponding value in tropical neritic waters.  相似文献   

2.
The copepod community observed during an 18-month period at the mouth of eutrophic Kingston Harbour, Jamaica, was dominated by small species of Parvocalanus, Temora, Oithona, and Corycaeus. Mean copepod biomass was 22.1 mg AFDW m−3 (331 mg m−2). Annual production was 1679 kJ m−2, partitioned as 174 kJ m−2 naupliar, 936 kJ m−2 copepodite, 475 kJ m−2 egg and 93 kJ m−2 exuvial production. All nauplii, most copepodites and many adults, equivalent to half of the biomass and production, were missed by a standard 200-μm plankton net, emphasizing the importance of nauplii and small species in secondary production estimates. The evidence suggests that growth rates and production are generally not food limited, and we speculate that size-selective predation shapes the structure of the harbour community. Biomass and production are higher than previous estimates for tropical coastal waters, but comparable to other eutrophic tropical embayments and many productive temperate ecosystems. Far from being regions of low productivity, tropical zooplankton communities may have significant production and deserve greater research attention than they currently receive. Received: 19 September 1997 / Accepted: 21 October 1997  相似文献   

3.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

4.
The study was carried out in the Skagerrak during late summer when population development in the pelagic cycle culminated in the yearly maximum in zooplankton biomass. The cyclonic circulation of surface water masses created the characteristic dome-shaped pycnocline across the Skagerrak. The large dinoflagellate Ceratium furca dominated the phytoplankton biomass. Ciliates and heterotrophic dinoflagellates were the major grazers and, potentially, consumed 43–166% of daily primary production. The grazing impact of copepods was estimated from specific egg production rates and grazing experiments. The degree of herbivory differed between species (14–85%), but coprophagy (e.g. feeding on fecal pellets) and ingestion of microzooplankton were also important. The appendicularian Oikopleura dioica was present in lower numbers than copepods, but cleared a large volume of water. The grazing impact of copepods and O. dioica was estimated to 57±24% and 12±12% of daily primary production, respectively. Sedimentation of organic material (30 m) varied between 169 and 708 mg C m–2 day–1, and the contribution from the mesozooplankton (copepod fecal pellets and mucus houses with attached phytodetritus of O. dioica) was 5–33% of this sedimentation. Recycling of fecal pellets and mucus houses in the euphotic zone was 59% and 36%, respectively. However, there was a high respiration of organic material by microorganisms in the mid-water column, and 34% of the sedimenting material actually reached the benthic community in the deep, central part of the Skagerrak.  相似文献   

5.
The fecundity of nine species of adult female calanoid copepods, and molting rates for copepodite stages of Calanus marshallae were measured in 24 h shipboard incubations from samples taken during the upwelling season off the Oregon coast. Hydrographic and chlorophyll measurements were made at approximately 300 stations, and living zooplankton were collected at 36 stations on the continental shelf (<150 m depth) and 37 stations offshore of the shelf (>150 m depth) for experimental work. In our experiments, maximum egg production rates (EPR) were observed only for Calanus pacificus and Pseudocalanus mimus, 65.7 and 3.9 eggs fem-1 day-1 respectively, about 95% of the maximum rates known from published laboratory observations. EPR of all other copepod species (e.g., C. marshallae, Acartia longiremis and Eucalanus californicus) ranged from 3% to 65% of maximum published rates. Fecundity was not significantly related to body weight or temperature, but was significantly correlated with chlorophyll a concentration for all species except Paracalanus parvus and A. longiremis. Copepod biomass and production in on-shelf waters was dominated by female P. mimus and C. marshallae, accounting for 93% of the adult biomass (3.1 mg C m-3) and 81% of the adult production (0.19 mg C m-3 day-1). Biomass in the off-shelf environment was dominated by female E. californicus, P. mimus, and C. pacificus, accounting for 95% of the adult biomass (2.2 mg C m-3) and 95% of the adult production (0.08 mg C m-3 day-1). Copepodite (C1-C5) production was estimated to be 2.1 mg C m-3 day-1 (on-shelf waters) and 1.2 mg C m-3 day-1 (off-shelf water). Total adult + juvenile production averaged 2.3 mg C m-3 day-1 (on-shelf waters) and 1.3 mg C m-3 day-1 (off-shelf waters). We compared our measured female weight-specific growth rates to those predicted from the empirical models of copepod growth rates of Huntley and Lopez [Am Nat (1992) 140:201-242] and Hirst and Lampitt [Mar Biol (1998) 132:247-257]. Most of our measured values were lower than those predicted from the equation of Huntley and Lopez. We found good agreement with Hirst and Lampitt for growth rates <0.10 day-1 but found that their empirical equations underestimated growth at rates >0.10 day-1. The mismatch with Hirst and Lampitt resulted because some of our species were growing at maximum rates whereas their composite empirical equations predict "global" averages that do not represent maximum growth rates.  相似文献   

6.
Predation of calanoid copepods on their own and other copepods’ offspring   总被引:1,自引:0,他引:1  
Predation of eggs and nauplii by adult copepods is often used to explain unexpected death rates in population dynamics studies, but the phenomenon has been rarely investigated or quantified. Therefore, we studied the predatory feeding of adult females (Acartia clausi, Centropages hamatus, Centropages typicus, and Temora longicornis) on their own and other species’ eggs and young nauplii with different densities of single animal-prey, mixtures of animal-prey and in the presence of diatoms. All species preyed on eggs and nauplii of their own and all other species. Maximal egg predation varied between 7 and 64 eggs fem?1 day?1. Ingestion of Centropages spp. eggs was lowest, potentially due to the spiny egg surface. Maximal feeding rates on nauplii ranged from 5 to 45 nauplii fem?1 day?1. T. longicornis preferred eggs, when eggs and nauplii were offered together at the same densities, and the other predators selected for nauplii. At a diatom concentration of 60 μg C l?1 predation on eggs by C. typicus was higher than without algae, whereas A. clausi and T. longicornis did not change their uptake of eggs. Feeding on nauplii in the presence of diatoms was again enhanced in C. typicus, and unaffected in A. clausi and C. hamatus. T. longicornis reduced its feeding on nauplii in the presence of diatoms. Calculated predation rates, using field abundances of predators and prey, suggest that predation of copepods on their own young stages may account for ca. 30 % of total mortality of young stages in North Sea copepod populations.  相似文献   

7.
Although scyphomedusae have received increased attention in recent years as important predators in coastal and estuarine environments, the factors affecting zooplankton prey vulnerability to these jellyfish remain poorly understood. Current models predicting feeding patterns of cruising entangling predators, such as Chrysaora quinquecirrha (Desor, 1948), fail to account for the selection of fast-escaping prey such as copepods. Nevertheless, our analysis of gastric contents of field-collected medusae showed that this scyphomedusa fed selectively on the calanoid copepod Acartia tonsa (Dana, 1846) and preferentially ingested adult over copepodite stages. We measured feeding rates in a planktonkreisel while simultaneously videotaping predator–prey interactions. C. quinquecirrha consumed adult A. tonsa ten times faster than copepodites. Differences in prey behavior, in the form of predator–prey encounter rates or post-encounter escape responses, could not account for the elevated feeding rates on adults. Prey size, however, had a dramatic impact on the vulnerability of copepods. In experiments using heat-killed prey, feeding rates on adults (1.5 times longer than copepodites) were 11 times higher than on copepodites. In comparison, medusae ingested heat-killed prey at only two to three times the rate of live prey. These results suggest that during scyphomedusan–copepod interactions, prey escape ability is important, but ultimately small size is a more effective refuge from predation. Received: 26 September 1997 / Accepted: 20 May 1998  相似文献   

8.
The annual population dynamics (nauplii, old copepodites CIV–CV and adults) and seasonal variations in reproductive parameters of the cyclopoid copepod Oithona similis were investigated on the basis of the data 1999–2006 in Kola Bay, a large subarctic fjord in the Barents Sea. Population density of O. similis ranged from 110 to 9,630 ind m−3 and averaged 1,020 ± 336 ind m−3. The relative abundance of adults was high during winter (~60%). At the end of winter (mid-March), the population included a large percentage of later-stage copepodites (stage CIV 23% and stage CV 57%). There were two periods of mass spawning, in late June and September. Autumn and summer generations strongly differed in abundance, average prosome length (PL), clutch size (CS), egg diameter (D), egg production rates (EPR and SEPR) and female secondary production. Average PL decreased with increasing water temperature, while D and CS were strongly correlated with PL but unaffected by temperature. Annual average EPR and SEPR were 0.55 ± 0.18 eggs female−1 day−1 and 0.0011 ± 0.003 day−1, respectively. Female secondary production averaged 0.8 ± 0.3 μg C m−3 day−1 (range 0.001–3.58). There were positive relationships between abundance, EPR, SEPR, production and water temperatures. Reproductive parameters appeared to be controlled by hydrological factors and food conditions.  相似文献   

9.
The vertical distribution of copepods, fecal pellets and the fecal pellet production of copepods were measured at seven stations across the Southern Indian Ocean from productive areas off South Africa to oligotrophic waters off Northern Australia during October/November 2006. We quantified export of copepod fecal pellet from surface waters and how much was retained. Furthermore, the potential impact of Oncaea spp. and harpacticoid copepods on fecal pellets degradation was evaluated and found to be regional substantial. The highest copepod abundance and fecal pellet production was found in the western nutrient-rich stations close to South Africa and the lowest at the central oligotrophic stations. The in situ copepod fecal pellet production varied between 1 and 1,000 μg C m−3 day−1. At all stations, the retention of fecal pellets in the upper 400 m of the water column was more than 99% and the vertical export of fecal pellets was low (<0.02 mg m−2 day−1).  相似文献   

10.
Spring distributions of some numerically dominant copepods reflect associations with two distinct water masses separated along the 80- to 100-m isobaths. Seaward of this middle shelf front, the oceanic Bering Sea hosts populations of Calanus cristatus, C. plumchrus, and Eucalanus bungii bungii; Metridia pacifica, Oithona similis, and Pseudocalanus spp. are also present. The large oceanic species are much less abundant in waters shallower than 80 m where the community is seasonally dominated by smaller copepods, O. similis, Acartia longiremis, and Pseudocalanus spp. Experimental and field-derived estimates of carbon ingestion indicate that the oceanic/outer shelf copepods can occasionally graze the equivalent of the daily plant production and probably routinely remove 20–30% of the primary productivity. Conversely, stocks of middle shelf copepods rarely ingest more than 5% of the plant carbon productivity. During 45 d between mid April to late May, 1979, approximately three times more organic matter was ingested m-2 by the outer shelf/oceanic copepod community than by middle shelf species. This imbalance in cross-shelf grazing permits middle shelf phytoplankton stocks to grow rapidly to bloom proportions, and to sink ungrazed to the seabed. Over the outer shelf and particularly along the shelf break, a much closer coupling to phytoplankton supports a large biomass of oceanic grazers. Here, copepod stocks approaching 45 g dry wt m-2 occur in late spring as a narrow band at the shelf break.Supported by National Science Foundation Grant DPP 76-23340Contribution no. 485, Institute of Marine Science, University of Alaska, Fairbanks  相似文献   

11.
The distribution of total dry weight of zooplankton, copepod numbers and ichthyoplankton across the outer continental shelf in the central Great Barrier Reef was examined at bi-weekly intervals for three months over summer of 1983. Copepods were sampled (236 m net) within 10 m of the surface and within 10 m of the bottom. Mean densities in surface waters decreased markedly from the mid-shelf to outer shelf and the Coral Sea, but no cross-shelf gradient occurred in the bottom-water. Densities of copepods on the mid-shelf (surface and bottom waters) and in bottom-waters of the outer shelf were typically ca. 400 m–3. Significantly lower densities (ca. 100 m–3) occurred in surface waters of the outer shelf, except during outbursts of Acartia australis, when densities in these waters differed little from those elsewhere on the shelf. In oceanic waters, 10 km from the outer shelf station, copepod densities in surface waters were ca. 40 m–3. Four of the five most abundant copepod taxa in surface waters, Paracalanus spp., Eucalanus crassus, Acrocalanus gracilis and Canthocalanus pauper, tended to be most abundant at the mid-shelf end of the transect. Acartia australis was sporadically very abundant in surface waters of the outer shelf, as was Paracalanus spp. in bottom-water of the outer shelf. An assemblage of Coral Sea species of copepod occurred in bottom-water of the outer shelf during two major intrusions, but not at other times. Densities of all common species varied considerably between cruises. Maximum densities of all common species except A. australis tended to be associated with diatom blooms linked to intrusions but a bloom did not necessarily mean all common species were abundant. Fish larvae included both reef and non-reef taxa, with reef taxa predominating on the outer shelf (approx 2:1 in density of individuals) and non-reef taxa dominating in nearshore samples (approx 2:1). Nine of the ten most abundant taxa analysed showed highly significant variation in numbers among stations and all but one of these also exhibited significant station x cruise interactions. Interactions generally reflected changes in the rank importance of adjacent stations from one cruise to the next or lack of any significant cross-shelf variation on some cruises where overall abundance of the taxa was low.  相似文献   

12.
Growth rates were determined for copepodites of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total copepodite development time was as short as 4 to 5 d. Mean instantaneous growth rates (g) ranged from as high as 1.2 d−1 to as low as 0.1 d−1. In general, cyclopoid copepods appeared to grow more slowly than calanoids of the same size. Enhancement of resources by nutrient addition caused a 32% increase in growth rates in experiments from a mesotrophic site, but only a 17% increase at a more eutrophic site. Additionally, copepodites at both sites showed faster development and generally larger size at stage in response to nutrient addition. Growth rates were positively related to chlorophyll concentration in the >2 μm size-fraction. A significant relationship of growth rate to body size (r 2 = 0.45) emerged across a wide range of trophic status, but it was confounded with resource availability. It appears that growth in tropical copepod copepodites may be frequently limited by resources in a size-dependent manner. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

13.
Food selection by laboratory-reared larvae of scaled sardines Harengula pensacolae, and bay anchovies Anchoa mitchilli, was compared. Natural plankton was fed to the larvae during the 22 days following hatching. Food levels in the rearing tanks were maintained at an average of 1,600 to 1,800 potential food organisms per liter. Larvae of both species selected as food copepod nauplii, copepodites, and copepods; initial feeding was on organisms of 50 to 75 body width. Larvae of H. pensacolae averaged 4.2 mm in total length at hatching and those of A. mitchilli about 2.0 mm. H. pensacolae larvae grew about 1.0 mm per day and A. mitchilli 0.70 mm per day. The mean number of food organisms in each digestive tract was greater in H. pensacolae than in A. mitchilli, and the difference in number increased as the larvae grew. Average size of food organisms eaten increased for both species with growth, because of selection by the larvae; the average size of copepodites and copepods in digestive tracts increased at a faste rate in H. pensacolae than A. mitchilli. A. mitchilli longer than 8 mm did not eat copepod nauplii.Contribution No. 170, Bureau of Commercial Fisheries Tropical Atlantic Biological laboratory, Miami, Florida 33149, USA.  相似文献   

14.
Monthly samples were collected in oceanic waters off Discovery Bay, Jamaica, in 60- and 200-m vertical hauls, using 200- and 64-m mesh plankton nets, from June 1989 to July 1991. Sixty-nine species of copepods were identified: nauplii, copepodites and adults were separately enumerated. Total copepod abundances (all stages) ranged from 695 to 4120 m-3 in the upper 60 m, and from 483 to 3319 m-3 in the 200-m water column, without any clear seasonal pattern. With the exception of temperature, no seasonal variations in physico-chemical (chlorophyll a, S, particulate organic carbon, particulate protein) or biological variables were evident. Nauplii, adults and copepodites of selected taxa, and two chaetognath species, showed no significant variations in body length. Significant variantions in reproductive index were detected for several species, but without seasonal trends; many species appear to be continuous or intermittent breeders. There was no evidence of seasonal pattern in overall community composition or diversity, or evidence of changes due to water mass advection. The copepod community can be divided into a recurrent group of 13 (at 60 m) to 17 (at 200 m) perennial species, present year-round, and associated ephemeral groups of 1 to 3 species, present randomly for 1 to 4 consecutive months. The most plausible explanation of these patterns is that broad areas of the Caribbean Sea are dominated by the community of perennial species, while the ephemeral species represent the superimposed influence of local mesoscale gyres.  相似文献   

15.
Zooplankton biomass in the ice-covered Weddell Sea,Antarctica   总被引:5,自引:0,他引:5  
Zooplankton was sampled by a Rectangular Midwater Trawl (RMT 1 + 8) in Weddell Sea surface waters (0 to 300 m) between 66 and 78°S during austral summer (February – March 1983). Sixty-nine taxa including different developmental stages were considered and divided into 16 size classes between <1 and >39.5 mm length. Biomass was determined by taxon and size class for three different meso- and macroplankton communities in the oceanic region, on the northeastern shelf and on the southern shelf of the Weddell Sea. The highest biomass of 11.2 mg DW m–3 (3.4 g DW m–2) was found in the northeastern shelf community (70 to 74°S), where juvenile and adultEuphausia crystallorophias accounted for 3.7 mg DW m–3 (1.1 g DW m–2). Although not quantitatively sampled, early copepodite stages (CI to CIII) ofCalanoides acutus andCalanus propinquus ranked second with 2.7 mg DW m–3 (0.8 g DW m–2). Biomass in the northeastern shelf community was concentrated in the size ranges 1 to 4 mm and 19.5 to 39.5 mm. The oceanic community of the central Weddell Sea was dominated by copepods smaller than 5 mm, which made up half of the total oceanic biomass. The tunicateSalpa thompsoni (7.0 to 8.5 mm) was the dominant single species with 1.6 mg DW m–3 (0.5 g DW m–2). Euphausiids, mainly juvenile and adult krillEuphausia superba, comprised 1.2 mg DW m–3 (0.4 g DW m–2). Total standing stock in the oceanic community was 9.4 mg DWm–3 (2.8 g DW m–2). Lowest biomass values were found in the southern shelf community (south of 75°S) with 4.0 mg DW m–3 (1.2 g DW m–2), concentrated in the 1 to 4 mm and 14.5 to 34.5 mm size classes. Abundant species were the pteropodLimacina helicina (1 to 2 mm; 0.7 mg DW m–3; 0.2 g DW m–2) andE. crystallorophias (24.5 to 39.5 mm; 0.9 mg DW m–3; 0.3 g DW m–2). The data reveal that it is essential to distinguish among subsystems in the Southern Ocean. This leads to a better understanding of the structure and function of those pelagic food webs which represent alternatives to the paradigmatic krill-centered system.  相似文献   

16.
A temperature-dependent growth model is presented for nauplii and copepodites of the estuarine calanoid copepod Acartia tonsa from southern Europe (Portugal). Development was followed from egg to adult in the laboratory at four temperatures (10, 15, 18 and 22°C) and under saturating food conditions (>1,000 μg C l−1). Development times versus incubation temperature were fitted to a Belehradek’s function, showing that development times decreased with increasing incubation temperature: at 10°C, A. tonsa need 40.3 days to reach adult stage, decreasing to 8.9 days when reared at 22°C. ANCOVA (homogeneity of slopes) showed that temperature (P<0.001) and growth phase (P<0.01) had a significant effect on the growth rate. Over the range of temperatures tested in this study, highest weight-specific growth rates were found during naupliar development (NI–NVI) and varied from 0.185 day−1 (10°C) to 0.880 day−1 (22°C) with a Q 10 equal to 3.66. During copepodite growth (CI–CV), the weight-specific growth rates ranged from 0.125 day−1 (10°C) to 0.488 day−1 (22°C) with a Q 10 equal to 3.12. The weight-specific growth rates (g) followed temperature (T) by a linear relationship and described as ln g=−2.962+0.130 T (r 2=0.99, P<0.001) for naupliar stages and ln g=−3.134+0.114T (r 2=0.97, P<0.001) for copepodite stages. By comparing in situ growth rates (juvenile growth and fecundity) for A. tonsa taken from the literature with the temperature-dependent growth model defined here we suggest that the adult females of A. tonsa are more frequently food limited than juveniles.  相似文献   

17.
Observations from a one-person submersible (Wasp) in fall, 1982, revealed a persistent aggregation of non-migrating, Stage V copepodites of Calanus pacificus californicus Brodsky in a band 20±3 m thick at a depth of 450 m, about 100 m above the bottom of the Santa Barbara Basin, California. Copepod abundances, calculated from nearest-neighbor distances measured directly from the submersible, yielded maximum densities of 26×106 copepodites m-3. Quiescent behavior, low laminarinase activity, low protein content, high lipid content and evidence of low excretion rate all suggest that these copepodites were in a state of diapause. Diapausing C. pacificus californicus at other locations along the eastern Pacific coast were also captured in discrete depth plankton tows. Both the submersible observations and the net collections suggest that the dense aggregation of diapausing copepods we observed in the Santa Barbara Basin was a phenomenon associated with seasonal upwelling cycles, and that such aggregations occur during non-upwelling periods when food is scarce in surface waters. Numerous predators, especially the deep sea smelt Leuroglossus stilbius, were observed feeding upon the aggregated copepods; thus, in contrast to the conventional picture of surface-dominated food distribution, deep-water aggregations of C. pacificus californicus may support the mesopelagic community during periods of low food availability in surface waters.  相似文献   

18.
Mechanisms initiating trypsinogen secretion were studied in laboratory reared herring larvae (Clupea harengus L.) exposed to physical and chemical stimuli. Pancreatic secretion of trypsinogen was quantified for each stimulus type as the increase above pre-stimulus level of intestinal trypsin content. Larval prey types were: nauplii, copepodites or adult Acartia tonsa, small polystyrene spheres (diameter 94 m), small (diameter 79 m) or large (diameter 170 m) polystyrene-latex spheres. Intestinal trypsin content can be expressed as a function of two variables: meal size and content of pancreatic trypsinogen. Trypsinogen secretion increases with different prey items in the order: small spheres, nauplii and copepodites. Larvae which eat large spheres secrete more enzyme than if fed small spheres but trypsinogen secretion is similar in fish larvae fed copepodites and large spheres. The fact that the size of non-biodegradable particles exerts a major control over trypsinogen secretion suggests neural — as opposed to chemically mediated — initiation of secretion. A cephalic phase of secretory stimulation could not be demonstrated during swallowing of copepods or exposure for 2 to 3 h to compounds which leak from live copepodites. As cephalic and gastric phases of secretory stimulation are absent, initiation of trypsinogen secretion must take place in the intestine. Larval herring retain trypsin in the intestine. Ca. 4.5 h after a meal, 3/4 of the enzyme is located in the intestinal fluid, presumably available for hydrolysis of subsequent meals, and the high proportion (ca. 25%) of the pancreatic trypsinogen content which is secreted for copepodite prey may thus not be energetically wasteful for the larvae.  相似文献   

19.
Egg production was measured in 17 species of copepods from the genera Acartia, Calanopia, Centropages, Clausocalanus, Corycaeus, Eucheata, Euterpina, Oithona, Oncaea, Paracalanus, Parvocalanus, Temora and Undinula in Jamaican waters. At the high local temperatures (∼28 °C), mean egg production ranged from 3.2 to 88 eggs female–1 d–1, and instantaneous female growth (g, as egg production) ranged from 0.04 to 0.87 d–1. Female growth was positively related to ambient chlorophyll concentration (r 2 = 0.44) and negatively to female body size (r 2 = 0.29). Together these two variables explained 60% of the variation in growth. When quadratic terms for chlorophyll and a term for interaction of body size and chlorophyll were introduced, 82% of the variance in growth rate was explained. Egg production rates represent an extension of the resource and size-dependent relationship established for copepodites. In smaller species (<3.5 μg), egg production was comparable to prior copepodite somatic growth; in larger species (>3.5 μg), egg production is compromised at lower resource concentrations than copepodite somatic growth. Thus, it appears that egg production in tropical copepods may be frequently limited by resources in a size-dependent manner. Under conditions where growth is resource limited, we caution against the application of egg production rates for the calculation of total copepod production. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

20.
During two expeditions of the R.V. Polarstern to the Arctic Ocean, pack ice and under-ice water samples were collected during two different seasons: late summer (September 2002) and late winter (March/April 2003). Physical and biological properties of the ice were investigated to explain seasonal differences in species composition, abundance and distribution patterns of sympagic meiofauna (in this case: heterotrophs >20 µm). In winter, the ice near the surface was characterized by extreme physical conditions (minimum ice temperature: –22°C, maximum brine salinity: 223, brine volume: 5%) and more moderate conditions in summer (minimum ice temperature: –5.6°C, maximum brine salinity: 94, most brine volumes: 5%). Conditions in the lowermost part of the ice did not differ to a high degree between summer and winter. Chlorophyll a concentrations (chl a) showed significant differences between summer and winter: during winter, concentrations were mostly <1.0 µg chl a l–1, while chl a concentrations of up to 67.4 µmol l–1 were measured during summer. The median of depth-integrated chl a concentration in summer was significantly higher than in winter. Integrated abundances of sympagic meiofauna were within the same range for both seasons and varied between 0.6 and 34.1×103 organisms m–2 in summer and between 3.7 and 24.8×103 organisms m–2 in winter. With regard to species composition, a comparison between the two seasons showed distinct differences: while copepods (42.7%) and rotifers (33.4%) were the most abundant sea-ice meiofaunal taxa during summer, copepod nauplii dominated the community, comprising 92.9% of the fauna, in winter. Low species abundances were found in the under-ice water, indicating that overwintering of the other sympagic organisms did not take place there, either. Therefore, their survival strategy over the polar winter remains unclear.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号