首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impacts of climate change are expected to be generally detrimental for agriculture in many parts of Africa. Overall, warming and drying may reduce crop yields by 10–20% to 2050, but there are places where losses are likely to be much more severe. Increasing frequencies of heat stress, drought and flooding events will result in yet further deleterious effects on crop and livestock productivity. There will be places in the coming decades where the livelihood strategies of rural people may need to change, to preserve food security and provide income-generating options. These are likely to include areas of Africa that are already marginal for crop production; as these become increasingly marginal, then livestock may provide an alternative to cropping. We carried out some analysis to identify areas in sub-Saharan Africa where such transitions might occur. For the currently cropped areas (which already include the highland areas where cropping intensity may increase in the future), we estimated probabilities of failed seasons for current climate conditions, and compared these with estimates obtained for future climate conditions in 2050, using downscaled climate model output for a higher and a lower greenhouse-gas emission scenario. Transition zones can be identified where the increased probabilities of failed seasons may induce shifts from cropping to increased dependence on livestock. These zones are characterised in terms of existing agricultural system, current livestock densities, and levels of poverty. The analysis provides further evidence that climate change impacts in the marginal cropping lands may be severe, where poverty rates are already high. Results also suggest that those likely to be more affected are already more poor, on average. We discuss the implications of these results in a research-for-development targeting context that is likely to see the poor disproportionately and negatively affected by climate change.  相似文献   

2.
As climate changes due to rising concentrations of greenhouse gases in the atmosphere, agriculture will be one of the key human activities affected. Projections show that while overall global food production in the coming decades may keep pace with the food requirements of a growing world population, climate change might worsen existing regional disparities because it will reduce crop yields mostly in lands located at lower latitudes where many developing countries are situated. Strategies to enhance local adaptation capacity are therefore needed to minimize climatic impacts and to maintain regional stability of food production. At the same time, agriculture as a sector offers several opportunities to mitigate the portion of global greenhouse gas emissions that are directly dependent upon land use, land-use change, and land-management techniques. This paper reviews issues of agriculture and climate change, with special attention to adaptation and mitigation. Specifically, as adaptation and mitigation strategies in agriculture are implemented to alleviate the potential negative effects of climate change, key synergies need to be identified, as mitigation practices may compete with modifications to local agricultural practices aimed at maintaining production and income. Under future climate and socio-economic pressures, land managers and farmers will be faced with challenges in regard to selecting those mitigation and adaptation strategies that together meet food, fiber and climate policy requirements.  相似文献   

3.
The water cycle, a fundamental component of climate, is likely to be altered in important ways by climate change. Climate change will most likely worsen the already existing water related problems. Then the question is how should policy makers respond to this dilemma. Climate change mitigation, through greenhouse gas (GHG) emissions reduction and sequestration is not a sufficient response. Adaptation will also need to feature as a response strategy. Mitigation and adaptation need to be viewed as complementary responses to climate change. Complementarity between adaptation and mitigation in the water sector will be addressed in this paper. The paper will also outline the main impacts of climate change on water resources and identify those areas that are most dependent and vulnerable to hydrological systems (e.g., hydroelectric systems, irrigation, agriculture) and any changes thereof resulting from climate change. It will aim to assess the impact of water demand and water use, with a view to identifying the main relationships between mitigation and adaptation in the water sector and the means through which individual mitigation and adaptation actions can potentially interact with each other for the benefit of the water sector as a whole. It will also explore the implications of climate change on the management of water resources. Adaptation and mitigation options would be considered in the context of their socio-economic and environmental impacts and their contribution to sustainable development. A brief evaluation of how this information can be directly used for planning purpose will also be presented.
Luis J. MataEmail:
  相似文献   

4.
A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we explore the constraints and barriers to implementation important for GHG mitigation in agriculture. We also examine how climate and non-climate policy in different regions of the world has affected agricultural GHG emissions in the recent past, and how it may affect emissions and mitigation implementation in the future. We examine the links between mitigation and adaptation and drives for sustainable development and the potential for agricultural GHG mitigation in the future.We describe how some countries have initiated climate and non-climate policies believed to have direct effects or synergistic effects on mitigating GHG emissions from agriculture. Global sharing of innovative technologies for efficient use of land resources and agricultural chemicals, to eliminate poverty and malnutrition, will significantly mitigate GHG emissions from agriculture.Previous studies have shown that as less than 30% of the total biophysical potential for agricultural GHG mitigation might be achieved by 2030, due to price- and non-price-related barriers to implementation. The challenge for successful agricultural GHG mitigation will be to remove these barriers by implementing creative policies. Identifying policies that provide benefits for climate, as well as for aspects of economic, social and environmental sustainability, will be critical for ensuring that effective GHG mitigation options are widely implemented in the future.  相似文献   

5.
Research shows that livestock account for a significant proportion of greenhouse gas (GHG) emissions and global consumption of livestock products is growing rapidly. This paper reviews the life cycle analysis (LCA) approach to quantifying these emissions and argues that, given the dynamic complexity of our food system, it offers a limited understanding of livestock's GHG impacts. It is argued that LCA's conclusions need rather to be considered within a broader conceptual framework that incorporates three key additional perspectives. The first is an understanding of the indirect second order effects of livestock production on land use change and associated CO2 emissions. The second compares the opportunity cost of using land and resources to rear animals with their use for other food or non-food purposes. The third perspective is need—the paper considers how far people need livestock products at all. These perspectives are used as lenses through which to explore both the impacts of livestock production and the mitigation approaches that are being proposed. The discussion is then broadened to consider whether it is possible to substantially reduce livestock emissions through technological measures alone, or whether reductions in livestock consumption will additionally be required. The paper argues for policy strategies that explicitly combine GHG mitigation with measures to improve food security and concludes with suggestions for further research.  相似文献   

6.
Taking the European Union (EU) as a case study, we simulate the application of non-uniform national mitigation targets to achieve a sectoral reduction in agricultural non-carbon dioxide (CO2) greenhouse gas (GHG) emissions. Scenario results show substantial impacts on EU agricultural production, in particular, the livestock sector. Significant increases in imports and decreases in exports result in rather moderate domestic consumption impacts but induce production increases in non-EU countries that are associated with considerable emission leakage effects. The results underline four major challenges for the general integration of agriculture into national and global climate change mitigation policy frameworks and strategies, as they strengthen requests for (1) a targeted but flexible implementation of mitigation obligations at national and global level and (2) the need for a wider consideration of technological mitigation options. The results also indicate that a globally effective reduction in agricultural emissions requires (3) multilateral commitments for agriculture to limit emission leakage and may have to (4) consider options that tackle the reduction in GHG emissions from the consumption side.  相似文献   

7.
On integration of policies for climate and global change   总被引:2,自引:0,他引:2  
Currently envisaged mitigation of greenhouse gases (GHG) emissions will be insufficient to appreciably limit climate change and its impacts. Adaptation holds the promise of ameliorating the impacts on a small subset of systems being affected. There is no question that both will be needed. However, climate change is only part of a broader multi-stress setting of global through to local changes. Privileging climate related policies over other concerns leads to tragic outcomes. Climate policies need to be designed for and integrated into this broader and challenging context. This paper focuses on placing climate change within the broader context of global change and the importance of aligning climate policy objectives with the myriad other policies that still need to be implemented if our primary goal is improving human welfare rather than limiting our focus to climate change and its impacts.  相似文献   

8.
Climate change, population growth and socio-structural changes will make meeting future food demands extremely challenging. As wheat is a globally traded food commodity central to the food security of many nations, this paper uses it as an example to explore the impact of climate change on global food supply and quantify the resulting greenhouse gas emissions. Published data on projected wheat production is used to analyse how global production can be increased to match projected demand. The results show that the largest projected wheat demand increases are in areas most likely to suffer severe climate change impacts, but that global demand could be met if northern hemisphere producers exploit climate change benefits to increase production and narrow their yield gaps. Life cycle assessment of different climate change scenarios shows that in the case of one of the most important wheat producers (the UK) it may be possible to improve yields with an increase of only 0.6% in the emission intensity per unit of wheat produced in a 2 °C scenario. However, UK production would need to rise substantially, increasing total UK wheat production emissions by 26%. This demonstrates how national emission inventories and associated targets do not incentivise minimisation of global greenhouse gas emissions while meeting increased food demands, highlighting a triad of challenges: meeting the rising demand for food, adapting to climate change and reducing emissions.  相似文献   

9.
Afforestation has the potential to offset the increased emission of atmospheric carbon dioxide and has therefore been proposed as a strategy to mitigate climate change. Here we review the opportunities for carbon (C) offsets through open lichen woodland afforestation in the boreal forest of eastern Canada as a case study, while considering the reversal risks (low productivity, fires, insect outbreaks, changes in land use and the effects of future climate on growth potential as well as on the disturbances regime). Our results suggest that : (1) relatively low growth rate may act as a limiting factor in afforestation projects in which the time available to increase C is driven by natural disturbances; (2) with ongoing climate change, a global increase in natural disturbance rates, mainly fire and spruce budworm outbreaks, may offset any increases in net primary production at the landscape level; (3) the reduction of the albedo versus increase in biomass may negatively affect the net climate forcing; (4) the impermanence of C stock linked to the reversal risks makes this scenario not necessarily cost attractive. More research, notably on the link between fire risk and site productivity, is needed before afforestation can be incorporated into forest management planning to assist climate change mitigation efforts. Therefore, we suggest that conceivable mitigation strategies in the boreal forest will likely have to be directed activities that can reduce emissions and can increase C sinks while minimizing the reversal impacts. Implementation of policies to reduce Greenhouse Gases (GHG) in the boreal forest should consider the biophysical interactions, the different spatial and temporal scales of their benefits, the costs (investment and benefits) and how all these factors are influenced by the site history.  相似文献   

10.
Among livestock systems, grazing is likely to be most impacted by climate change because of its dependency to feed quality and availability. In order to reduce the impact of climate change on grazing livestock systems, adaptation measures should be implemented. The goal of this study is to identify the best pasture composition for a representative grazing dairy farm in Michigan in order to reduce the impacts of climate change on production. In order to achieve the goal of this study, three objectives were sought: (1) identify the best pasture composition, (2) assess economic and resource use impacts of pasture compositions under future climate scenarios, and (3) evaluate the resiliency of pasture compositions. A representative farm was developed based on a livestock practices survey and incorporated into the Integrated Farm System Model (IFSM). For the pasture compositions, four cool-season grass species and two legumes were evaluated under both current and future climate scenarios. The effectiveness of adaptation measures based on economic and resource use criteria was evaluated. Overall, the pasture composition with 50% perennial ryegrass (Lolium multiflorum) and 50% red clover (Trifolium pratense) was identified as the best. In addition, the increase in precipitation and temperature of the most intensive climate scenario could significantly improve farm net return per cow (Bos taurus) and whole farm profit while no significant impact was observed on resource use criteria. Finally, the overall sensitivity assessment showed that the most resilient pasture composition under future climate scenarios was ryegrass with red clover and the least resilient was orchardgrass (Dactylis glomerata) with white clover (Trifolium repens).  相似文献   

11.
It is now widely accepted that climate change is happening and that future changes will impact on many aspects of society, including agriculture. To maintain food supplies, the agricultural industry must address climate change adaptation. Key to this is the attitudes of those within the industry likely to have responsibility for adapting. This study investigated stakeholder attitudes towards adaptation to climate change in the livestock industry. Findings reveal four attitudinal groups. First, there is a ‘farmer-focused group’ that has a positive attitude about the ability of livestock farmers to adapt to climate change, but that also has the opinion that they will need additional support to adapt. Second, there is an ‘incentive for enterprise, anti-GM (genetic modification) group’ with an attitudinal position stressing that the government should have a role in implementing regulations and providing finance. This group has a negative attitude towards GM technology and does not think it will be the answer to climate change. Third, there is an ‘information and education group’ whose attitude is that the provision of information is crucial for ensuring that the livestock industry adapts. Fourth, there is a ‘pro-technology group’ who have a positive attitude towards GM technology and who are therefore willing to embrace it as the route to adaptation. Three of these four groups favour soft adaptations that maintain flexibility within the system, and only the fourth is of the opinion that adaptive capacity is not an issue and that the industry is ready to implement hard adaptations.  相似文献   

12.
There are worldwide approximately 4.3 million coffee (Coffea arabica) producing smallholders generating a large share of tropical developing countries’ gross domestic product, notably in Central America. Their livelihoods and coffee production are facing major challenges due to projected climate change, requiring adaptation decisions that may range from changes in management practices to changes in crops or migration. Since management practices such as shade use and reforestation influence both climate vulnerability and carbon stocks in coffee, there may be synergies between climate change adaptation and mitigation that could make it advantageous to jointly pursue both objectives. In some cases, carbon accounting for mitigation actions might even be used to incentivize and subsidize adaptation actions. To assess potential synergies between climate change mitigation and adaptation in smallholder coffee production systems, we quantified (i) the potential of changes in coffee production and processing practices as well as other livelihood activities to reduce net greenhouse gas emissions, (ii) coffee farmers’ climate change vulnerability and need for adaptation, including the possibility of carbon markets subsidizing adaptation. We worked with smallholder organic coffee farmers in Northern Nicaragua, using workshops, interviews, farm visits and the Cool Farm Tool software to calculate greenhouse gas balances of coffee farms. From the 12 activities found to be relevant for adaptation, two showed strong and five showed modest synergies with mitigation. Afforestation of degraded areas with coffee agroforestry systems and boundary tree plantings resulted in the highest synergies between adaptation and mitigation. Financing possibilities for joint adaptation-mitigation activities could arise through carbon offsetting, carbon insetting, and carbon footprint reductions. Non-monetary benefits such as technical assistance and capacity building could be effective in promoting such synergies at low transaction costs.  相似文献   

13.
Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by,inter alia, incorporating climate change risk assessment into development planning processes i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (or, better, adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. The urgent issue is the mismatch between the predictions ofglobal climatic change and the need for information onlocal to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. Moreover, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. Unfortunately, climate models cannot yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes.  相似文献   

14.
The paper reviews base year emission inventories, driving forces, and long-term scenarios of sulfur emissions as background material for developing a new set of IPCC emissions scenarios. The paper concludes that future sulfur emission trends will be spatially heterogeneous (decline in OECD countries, rapid increase particularly in Asia) and therefore cannot be modeled at a global scale only. In view of ecosystems and food production impacts future sulfur emissions will need to be increasingly controlled also outside OECD countries. As a result, future sulfur emissions are likely to remain significantly below the values projected in the previous IPCC IS92 high emissions scenarios.  相似文献   

15.
Numerous empirical and simulation-based studies have documented or estimated variable impacts to the economic growth of nation states due to the adoption of domestic climate change mitigation policies. However, few studies have been able to empirically link projected changes in economic growth to the provision of public goods and services. In this research, we couple projected changes in economic growth to US states brought about by the adoption of a domestic climate change mitigation policy with a longitudinal panel dataset detailing the production of outdoor recreation opportunities on lands managed in the public interest. Joining empirical data and simulation-based estimates allow us to better understand how the adoption of a domestic climate change mitigation policy would affect the provision of public goods in the future. We first employ a technical efficiency model and metrics to provide decision makers with evidence of specific areas where operational efficiencies within the nation's state park systems can be improved. We then augment the empirical analysis with simulation-based changes in gross state product (GSP) to estimate changes to the states’ ability to provide outdoor recreation opportunities from 2014 to 2020; the results reveal substantial variability across states. Finally, we explore two potential solutions (increasing GSP or increasing technical efficiency) for addressing the negative impacts on the states’ park systems operating budgets brought about by the adoption of a domestic climate change mitigation policy; the analyses suggest increasing technical efficiency would be the most viable solution if/when the US adopts a greenhouse gas reduction policy.  相似文献   

16.
An environmentally extended input-output (EE-IO) analysis - environmental impacts of material flows caused by the Finnish economy - was carried out in order to improve data on production and consumption in Finland. The study resulted in the ENVIMAT model, which can be used to analyze the relationship between material flows, environmental impacts and the economy. The model is based on monetary and physical input-output tables and an environmental life-cycle impact assessment. This article summarizes the main methodological aspects and findings regarding the material flows and climate impacts caused by the Finnish economy in 2002 and 2005. The Finnish model has relatively detailed input data with 150 industries and 918 products and the data on imports was assessed according to a mixed approach with the help of life-cycle inventory data. The results of the model showed that the Finnish economy uses imported material resources as much as domestic resources. Life-cycle greenhouse gas (GHG) emissions caused by imports were equivalent to 70-80% of domestic emissions. The GHG emissions embodied in imports (emissions abroad) and exports (emissions within Finland) were of the same magnitude. The analysis showed that the service sector accounted for 44% of GHG emissions caused by the domestic final use of products. Analysis of the results also showed that the indicator of total material requirement (TMR) should not be used for environmental impact comparisons of products and services. In the future, the aim is to use the ENVIMAT model for assessing temporal changes in the economy; for monitoring sustainable development; for planning climate change mitigation; and for identifying important factors in the economy and assessing their impacts.  相似文献   

17.
This paper is concerned with the implications of climate change, and government policies to address it, for countries’ fiscal systems at the national level. Given the uncertainties associated with climate change and countries’ responses to it, the article can do no more than review and suggest some of the major issues of likely importance for fiscal sustainability and how they might be addressed. First the paper defines fiscal sustainability and addresses some general issues related to countries’ attempts to adapt to or mitigate climate change. It then works through a number of more specific issues, discussing policies such as the implementation of environmental taxes or other instruments for the mitigation of climate change. The assessment of the impacts of such policies on fiscal sustainability requires the application of sophisticated economic models, and the paper briefly explores the relative advantages of different modeling approaches in relation to the assessment of fiscal sustainability under policies to mitigate climate change. The major research need identified by the paper is for the development of macroeconomic models that will enable countries identify the wider effects of environmental taxes and help them undertake multi-year budgeting processes.  相似文献   

18.
This two-part paper considers the complementarity between adaptation and mitigation in managing the risks associated with the enhanced greenhouse effect. Part one reviews the application of risk management methods to climate change assessments. Formal investigations of the enhanced greenhouse effect have produced three generations of risk assessment. The first led to the United Nations Intergovernmental Panel on Climate Change (IPCC), First Assessment Report and subsequent drafting of the United Nations Framework Convention on Climate Change. The second investigated the impacts of unmitigated climate change in the Second and Third IPCC Assessment Reports. The third generation, currently underway, is investigating how risk management options can be prioritised and implemented. Mitigation and adaptation have two main areas of complementarity. Firstly, they each manage different components of future climate-related risk. Mitigation reduces the number and magnitude of potential climate hazards, reducing the most severe changes first. Adaptation increases the ability to cope with climate hazards by reducing system sensitivity or by reducing the consequent level of harm. Secondly, they manage risks at different extremes of the potential range of future climate change. Adaptation works best with changes of lesser magnitude at the lower end of the potential range. Where there is sufficient adaptive capacity, adaptation improves the ability of a system to cope with increasingly larger changes over time. By moving from uncontrolled emissions towards stabilisation of greenhouse gases in the atmosphere, mitigation limits the upper part of the range. Different activities have various blends of adaptive and mitigative capacity. In some cases, high sensitivity and low adaptive capacity may lead to large residual climate risks; in other cases, a large adaptive capacity may mean that residual risks are small or non-existent. Mitigative and adaptive capacity do not share the same scale: adaptive capacity is expressed locally, whereas mitigative capacity is different for each activity and location but needs to be aggregated at the global scale to properly assess its potential benefits in reducing climate hazards. This can be seen as a demand for mitigation, which can be exercised at the local scale through exercising mitigative capacity. Part two of the paper deals with the situation where regional bodies aim to maximise the benefits of managing climate risks by integrating adaptation and mitigation measures at their various scales of operation. In north central Victoria, Australia, adaptation and mitigation are being jointly managed by a greenhouse consortium and a catchment management authority. Several related studies investigating large-scale revegetation are used to show how climate change impacts and sequestration measures affect soil, salt and carbon fluxes in the landscape. These studies show that trade-offs between these interactions will have to be carefully managed to maximise their relative benefits. The paper concludes that when managing climate change risks, there are many instances where adaptation and mitigation can be integrated at the operational level. However, significant gaps between our understanding of the benefits of adaptation and mitigation between local and global scales remain. Some of these may be addressed by matching demands for mitigation (for activities and locations where adaptive capacity will be exceeded) with the ability to supply that demand through localised mitigative capacity by means of globally integrated mechanisms.  相似文献   

19.
The papers in this Special Issue are the primary technical underpinnings for the Northeast Climate Impacts Assessment (NECIA), an integrated regional-scale assessment of projected climate change, impacts and options for mitigation and adaptation across the US Northeast. The consequences of future pathways of greenhouse gas emissions on projected climate and impacts across climate-sensitive sectors is assessed by using downscaled projections from three global climate models under both higher (Alfi) and lower (B1) emissions scenarios. The findings illustrate that near-term reductions in emissions can greatly reduce the extent and severity of regionally important impacts on natural and managed ecosystems and public health in the latter half of this century, and increase the feasibility that those impacts which are now unavoidable can be successfully managed through adaptation.  相似文献   

20.
Socio-economic impacts of climate change on rural United States   总被引:4,自引:4,他引:0  
Directly or indirectly, positively or negatively, climate change will affect all sectors and regions of the United States. The impacts, however, will not be homogenous across regions, sectors, population groups or time. The literature specifically related to how climate change will affect rural communities, their resilience, and adaptive capacity in the United States (U.S.) is scarce. This article bridges this knowledge gap through an extensive review of the current state of knowledge to make inferences about the rural communities vulnerability to climate change based on Intergovernmental Panel on Climate Change (IPCC) scenarios. Our analysis shows that rural communities tend to be more vulnerable than their urban counterparts due to factors such as demography, occupations, earnings, literacy, poverty incidence, and dependency on government funds. Climate change impacts on rural communities differs across regions and economic sectors; some will likely benefit while others lose. Rural communities engaged in agricultural and forest related activities in the Northeast might benefit, while those in the Southwest and Southeast could face additional water stress and increased energy cost respectively. Developing adaptation and mitigation policy options geared towards reducing climatic vulnerability of rural communities is warranted. A set of regional and local studies is needed to delineate climate change impacts across rural and urban communities, and to develop appropriate policies to mitigate these impacts. Integrating research across disciplines, strengthening research-policy linkages, integrating ecosystem services while undertaking resource valuation, and expanding alternative energy sources, might also enhance coping capacity of rural communities in face of future climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号