共查询到16条相似文献,搜索用时 72 毫秒
1.
冬季大气中PM10和PM2.5污染特征及形貌分析 总被引:2,自引:4,他引:2
2008年冬季采集大气中PM10和PM2.5样品,利用SPSS软件进行分析。结果表明,PM10质量浓度在92.87~384.7μg/m3之间,平均值为201.09μg/m3,超标率71.43%。PM2.5浓度跨度为57.27~230.21μg/m3,平均值为133.82μg/m3,超标率89.47%。PM10和PM2.5空间分布略有差异。PM2.5/PM10在29.10%~94.76%之间,均值为66.55%。PM2.5与PM10质量浓度之间有显著相关性,相关方程:PM2.5=0.7993×PM10-55.984(R2=0.9524,置信度为95%)。通过颗粒物形貌分析,初步判定冬季大气主要污染源为燃煤和机动车尾气排放。 相似文献
2.
2013年3月—2014年2月期间,设置1个监测点位,采集了西安市区大气环境中PM10和PM2.5样品,采用重量法测定了PM2.5和PM10质量浓度。结果表明,西安市区PM2.5质量浓度为16~558μg/m3,平均值为128μg/m3,超标率69.1%;PM10质量浓度范围为32~887μg/m3,平均值为249μg/m3,超标率71.8%。虽然PM2.5和PM10质量浓度的逐日变化幅度比较大,但是整体变化趋势非常相似,存在显著的正相关关系(r=0.831 9)。PM2.5和PM10质量浓度存在明显的季节变化,均为冬季最高,春季次之,秋季较低,夏季最低。ρ(PM2.5)/ρ(PM10)为0.245~0.822,平均值为0.510,说明PM2.5在PM10中所占比例大于PM2.5~10;此外,该比值呈现一定的季节变化规律,冬季、夏季较高,秋季次之,春季最低。霾天气发生时,该比值和PM2.5质量浓度明显高于无霾天气。 相似文献
3.
利用2013年12月—2014年11月杭州城区空气质量监测站PM_(2.5)、PM_(10)浓度值结合气象、道路、人口数据以及站点周边绿地信息分析PM_(2.5)、PM_(10)浓度时空特征及其影响因子。结果表明,杭州城区各监测站PM_(2.5)和PM_(10)晴天日浓度变化趋势基本一致,PM_(2.5)比PM_(10)污染严重;晴天日PM_(2.5)、PM_(10)浓度值与对应的温度(-0.463,-0.281)、风速(-0.305,-0.332)呈负相关,与湿度(0.257,0.239)呈正相关;晴天有风时,杭州市区PM_(2.5)、PM_(10)污染北部重于南部,东部重于西部,浓度极高值集中在风速小于5 m/s时段,且风速越小浓度值越高;温度为12℃左右,湿度在60%~80%时,颗粒物污染最严重;交通高峰时各监测站PM_(2.5)、PM_(10)污染程度存在明显差异。相关性分析表明,PM_(2.5)、PM_(10)污染程度与道路密度成正比,与缓冲区内绿地覆盖面积成反比。PM_(2.5)污染程度与人口密度成正比,PM_(10)污染与人口密度成反比。 相似文献
4.
了解不同气象条件下城市人行道细颗粒物(PM2.5)时空分布特征对于指导城市环境评价及街道空间规划布局具有重要意义。选取长沙市车流量及人流量较大的4条道路旁0、5、10 m处的人行道,在冬季晴天、阴天和大风天开展PM2.5质量浓度、风速、温度及相对湿度监测,探讨PM2.5分布特征与气象因子的关系。结果表明:冬季晴天、阴天及大风天的人行道PM2.5质量浓度变化呈现双峰双谷特征,峰值均出现在06:00—08:00,其次为18:00—20:00,谷值出现在14:00—16:00及22:00—24:00;距离机动车道10m处的人行道PM2.5含量低于机动车道旁(即距离机动车道0 m)的人行道PM2.5含量,这种差异在大风天气下更为显著;人行道PM2.5质量浓度与温度、风速呈显著负相关关系,与空气湿度呈显著正相关关系,低温不利于PM2.5扩散,但在大风天温度对PM2.5的影响极小,风对PM2.5含量的变化影响极大,在远离机动车道的人行道更为显著,而高湿度天气有利于PM2.5的凝结。低温、高湿天气下06:00—08:00、18:00—20:00人行道PM2.5质量浓度较高,大风对PM2.5质量浓度具有一定削减作用,早晚高峰减少人行道洒水以降低空气湿度,有利于PM2.5质量浓度的降低,减少PM2.5积累。 相似文献
5.
对2014—2016年齐齐哈尔市PM_(2.5)与PM_(10)质量浓度的时间变化特征进行简要分析,并探究PM_(2.5)/PM_(10)以及PM_(2.5)与PM_(10)的相关性。结果表明:2014—2016年齐齐哈尔的PM_(2.5)与PM_(10)的年均质量浓度分别为36.7、62.9μg/m~3,且呈逐渐下降趋势;冬季的PM_(2.5)与PM_(10)浓度最高,秋季次之,春季与夏季相对较低;2014—2016年PM_(2.5)与PM_(10)质量浓度月变化趋势基本相同,整体呈现2—6月逐渐下降,9—11月逐渐上升的规律;PM_(2.5)与PM_(10)质量浓度的日变化均呈双峰现象;对PM_(2.5)与PM_(10)进行线性拟合,相关系数为0.896 3。同时,残差分析也说明两者拟合情况良好,四季相关系数为r_(秋季)(0.982 2)r_(冬季)(0.964 4)r_(夏季)(0.943 9)r_(春季)(0.829 6);2014—2016年PM_(2.5)/PM_(10)平均值为55.27%,大气颗粒物PM_(2.5)的贡献率高达一半以上。 相似文献
6.
利用实时监测数据分析2017—2021年邯郸市及周边区县PM2.5和O3污染特征。研究发现:2017—2021年各地区PM2.5年均质量浓度持续降低,轻度及轻度以上污染逐渐减少;2017—2019年O3污染加剧,2020年起O3年均质量浓度逐年下降,污染天不断减少。PM2.5和O3-8 h分别在1月(平均浓度为127.3 μg/m3,平均超标22d)和6月(平均浓度为233.4 μg/m3,平均超标22 d)污染最严重。结合气象参数分析来看,PM2.5与温度、风速和降水量呈显著负相关,与相对湿度呈显著正相关;O3-8h与温度呈显著正相关,而与风速、湿度和降水量的相关性较弱。后向轨迹和潜在源分析表明:邯郸地区PM2.5典型污染月受山西省中部地区污染传输影响最大,O3典型污染月受河南省东部污染传输影响最大。 相似文献
7.
8.
对合肥市2014—2019年秋冬季节PM_(1.0)、PM_(2.5)、气象和理化性质等进行分析研究发现,PM_(1.0)质量浓度呈现年度波动性下降趋势,其中2015—2016年度变化最为显著。同一年度内,月度浓度同样呈现波动性变化,总体表现为11、2月PM_(1.0)质量浓度相对较低,12、1月相对较高。无污染情形时(PM_(2.5)浓度不高于75μg/m~3),PM_(1.0)/PM_(2.5)逐小时值相对平稳且比有污染情形(PM_(2.5)浓度大于75μg/m~3)总体高约10%;有污染情形下,PM_(1.0)/PM_(2.5)小时值呈现较明显的日变化特征,09∶00呈现谷值,17∶00呈现峰值,日变化特征显著高于无污染情形。PM_(1.0)质量浓度随着PM_(2.5)级别的上升而逐渐增加,PM_(1.0)/PM_(2.5)值则呈减小的污染特征。严重污染时,PM_(1.0)/PM_(2.5)显著下降,PM_(1.0~2.5)占比增加。传输型污染过程中,PM_(1.0)与OC、PM_(2.5)、SO_4~(2-)等呈现出显著的正相关性,污染来源主要为工业源、燃煤源、道路尘等,共占载荷为83.90%。本地累积型污染过程中,PM_(1.0)与PM_(2.5)、SO_4~(2-)、Ba和Cu等呈现出较好相关性,污染来源主要为烟花爆竹与二次生成,共占载荷为87.94%。 相似文献
9.
2011年5月—2012年1月在天津市南开区设立采样点,采集大气中PM10和PM2.5样品。采用离子色谱法测定颗粒物中水溶性无机阴离子、阳离子成分,分析其主要组成、季节变化及污染来源。结果表明,天津市PM10中离子平均浓度为71.2μg/m3,占PM10质量浓度的33.7%。PM2.5中离子平均浓度为54.8μg/m3,占PM2.5质量浓度的39.6%。NH+4、SO2-4、NO-3等二次离子含量较大,且夏季含量均为最高。颗粒物总体呈酸性,PM10中∑阳离子/∑阴离子平均值为0.92,PM2.5中该比值为0.75。来源分析发现,PM10可能主要来源于海盐、工业源、二次反应及土壤和建筑尘等,PM2.5则主要来源于海盐污染源、二次反应及生物质燃烧。 相似文献
10.
对2013年1月10—14日发生的持续性PM2.5重污染过程从污染过程演变、气象条件影响、与气态污染物关系、区域污染背景、PM2.5浓度空间分布演变及其与地面风场的关系、PM2.5组分特征等多个方面进行全面的分析,较为完整地还原了该次重污染案例的形成原因以及主要影响因素。主要结论包括:该次重污染过程是稳定气象条件下导致的局地污染物积累,再叠加华北区域性污染的影响共同造成,其中10、12日北京地区PM2.5浓度的快速增长反映了周边污染传输的显著影响;逆温不但造成污染物难以扩散,且不同的逆温类型对PM2.5浓度水平有显著影响,同时还发现逆温的破坏导致近地面高浓度污染物向上扩散,造成百花山出现峰值高污染浓度现象;NO2与PM2.5浓度水平的高相关性反映交通污染二次转化对PM2.5浓度水平的影响,在较高湿度条件下,SO2浓度水平对湿度敏感且表现为负相关性;该次污染过程中OM、SO2-4、NO-3、NH+4等组分在PM2.5质量浓度中的占比超过70%,说明燃煤、机动车等仍是北京地区最主要的污染来源,同时SO2-4占比最高也说明区域污染传输对该次重污染的显著贡献。 相似文献
11.
选取荒漠草原无林地的PM2.5、PM10浓度以及气象因子数据,对颗粒物浓度的时间变化特征及其与气象因子的关系进行分析。结果表明:(1)1月的PM2.5、PM10月平均浓度最高,7月的PM2.5与PM10达到最低。季节尺度上PM2.5、PM10浓度变化为由大到小顺序依次为冬季>秋季>春季>夏季。(2)风速≤4.0 m/s时,随着风速增加,PM2.5、PM10浓度不断降低;当风速>4.0 m/s时,PM2.5、PM10浓度随风速增加而增加。PM2.5、PM10浓度与温度负相关。相对湿度≤50%时,随着相对湿度增加,PM2.5、PM10浓度呈增加趋势;相对湿度>50%时,随着空气湿度增加,PM2.5 相似文献
12.
利用中国环境监测总站的城市空气质量自动监测数据,分析了2015年山东省细颗粒物(PM2.5)和臭氧(O3)污染的时空分布特征,并初步探讨了其与气象要素的相互关系。研究发现:山东省PM2.5年均质量浓度和年超标天数的空间分布均呈现由东部向西部递增的趋势,半岛地区的浓度最低,其他地区浓度均较高,年均质量浓度最大值出现在德州(101 μg/m3)。各城市PM2.5的月均质量浓度均呈现出季节性变化,冬季最高,夏季最低。O3-8h年均值和O3年超标天数的空间分布与PM2.5不同,半岛地区污染天数最少,其次为南部地区,中部地区和西北部地区污染最为严重并且各区域的城市之间O3污染情况存在较大差异,具有明显的局地性特征。O3质量浓度在春末夏初最高,超标现象主要出现在5—8月。分析各城市PM2.5污染和O3污染的协同性与差异性发现,虽然不同城市之间两者污染情况存在一定差异,但整体上看,山东省大气复合污染特征明显,全年有10个城市的PM2.5和O3同时超标天数都在20 d以上,并且该现象主要发生在夏季。夏季高温低湿的大陆气团控制更有利于O3和PM2.5叠加共存形成复合型污染。温度≥26℃时,O3-8 h与PM2.5日均质量浓度的相关系数为0.63,相对湿度≤60%时,两者相关系数为0.69。此外,当在大陆气团的控制下发生O3污染时,相对湿度的提高更有利于PM2.5浓度的增加。 相似文献
13.
为了解采暖期大气PM_(1.0)和PM_(2.5)中水溶性离子污染特征,采集哈尔滨市2014年11月至2015年3月采暖期PM_(1.0)和PM_(2.5)的样品,进而分析其中的水溶性离子(F-、Cl-、NO-3、SO2-4、Na+、NH+4、K+、Mg2+、Ca2+)的质量浓度。结果表明:PM_(1.0)和PM_(2.5)中的水溶性离子具有相同的变化趋势。采暖期间PM_(1.0)和PM_(2.5)中9种水溶性离子质量浓度总和分别为25.4~60.7μg/m~3和38.8~78.0μg/m~3。在PM_(1.0)和PM_(2.5)中NH+4、NO-3、SO2-4占比较高,而F-、Mg2+占比较低。PM_(1.0)和PM_(2.5)中9种水溶性离子质量浓度均为夜间大于白天。在PM_(1.0)和PM_(2.5)中,Mg2+和NH+4、F-和Cl-呈显著相关,说明它们来自相似的污染源,在PM_(1.0)中的K+和Ca2+显著相关,故它们受相似的污染源的影响。根据酸度与各离子的相关性,得出SO2-4和NH+4是控制大气颗粒物酸碱性的主要离子。另外,气象因素对PM_(1.0)和PM_(2.5)的浓度有影响。 相似文献
14.
2013年2月1日至3月20日、2013年7月10日至8月10日对成都市大气中细颗粒物(PM2.5)进行连续监测,同步记录气象数据。将PM2.5质量浓度与城市气象条件进行相关性分析,研究气象条件对PM2.5质量浓度的影响。2月1日至3月20日PM2.5质量浓度平均为147.38μg/m3,7月10日至8月10日平均为50.19μg/m3,大气细颗粒物污染最严重的时间出现在2月1—6日。成都市各气象条件中,PM2.5质量浓度与能见度、风速呈现显著负相关,而与其他气象要素相关性较弱,降水对PM2.5质量浓度影响也很大。改善城市通风有利于成都市大气中PM2.5的稀释和消散。通过建立3D模型并运用计算流体力学(CFD)软件模拟成都市选定的一处密集的建成区域,分析城市空间形态对通风的影响。研究发现,在假设等温的情况下,多层密集的区域对城市通风影响小,而高层对城市通风影响很大,建筑高度相近的街道与风向平行的风速大于与风向成角度的,与风向平行的街道沿线为高层的风速高于沿线为多层的,较大的开敞空间及背景风速更有利于城市通风环境。 相似文献
15.
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。 相似文献
16.
为研究杭州PM2.5污染来源特征,利用2013—2019年杭州市PM2.5监测数据和气象观测数据,分析了杭州市2013—2019年PM2.5浓度变化,选取本地积累型和输入型2种PM2.5污染过程,结合单颗粒气溶胶飞行时间质谱仪(SPAMS)和在线离子色谱数据,探讨杭州市PM2.5化学组分和污染来源。结果表明:每年秋冬季(11月至次年3月)杭州以东北风、西北风及偏南风为主,风速低于4 m/s时,大气扩散条件差,受本地污染物积累影响,PM2.5浓度容易出现超标;风速较大且为东北风和西北风时,受上游污染输入影响,易出现PM2.5重度污染。本地积累型和输入型案例中,PM2.5化学组分中占比最大的为NO-3、SO42-和NH+4;PM2.5浓度上升过程中,二次NO 相似文献