首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pang J  Chan GS  Zhang J  Liang J  Wong MH 《Chemosphere》2003,52(9):1559-1570
Physiological aspects of why vetiver grass (Vetiveria zizanioides L.) can be tolerant to heavy metals and be used as an alternative method for rehabilitation of abandoned metalliferous mine wastelands have been investigated. The results showed that high proportions of lead and zinc (Pb/Zn) tailing greatly inhibited the leaf growth, dry matter accumulation, and photosynthesis of leaves, but stimulated the accumulation of proline and abscisic acid (ABA), and enhanced the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), implying that different mechanisms to detoxify active oxygen species (AOS) existed in different parts of plants. Physiological responses to heavy metal treatments differed greatly between roots and shoots. Nitrogen fertilizer application could greatly alleviate the adverse effects of high proportions of Pb/Zn tailing on vetiver grass growth.  相似文献   

2.
Lai HY  Chen ZS 《Chemosphere》2004,55(3):421-430
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from contaminated soils. Vetiver grass (Vetiver zizanioides) has strong and long root tissues and is a potential phytostabilization plant since it can tolerate and grow well in soils contaminated with multiple heavy metals. Soil was moderately artificially contaminated by cadmium (20 mg/kg), zinc (500 mg/kg), and lead (1000 mg/kg) in pot experiments. Three concentrations of Na2-EDTA solution (0, 5, and 10 mmol/kg soil) were added to the contaminated soils to study the influence of EDTA solution on phytoextraction by rainbow pink or phytostabilization by vetiver grass. The results showed that the concentrations of Cd, Zn, and Pb in a soil solution of rainbow pink significantly increased following the addition of EDTA (p < 0.05). The concentrations of Cd and Pb in the shoots of rainbow pink also significantly increased after EDTA solution was applied (p < 0.05), but the increase for Zn was insignificant. EDTA treatment significantly increased the total uptake of Pb in the shoot, over that obtained with the control treatment (p < 0.001), but it did not significantly increase the total uptake of Cd and Zn. The concentrations of Zn and Pb in the shoots of rainbow pink are significantly correlated with those in the soil solution, but no relationship exists with concentrations in vetiver grass. The toxicity of highly contaminating metals did not affect the growth of vetiver grass, which was found to grow very well in this study. Results of this study indicate that rainbow pink can be considered to be a potential phytoextraction plant for removing Cd or Zn from metal-contaminated soils, and that vetiver grass can be regarded as a potential phytostabilization plant that can be grown in a site contaminated with multiple heavy metals.  相似文献   

3.
To develop an efficient bio-immobilization approach for the remediation of heavy metal pollution in soil, a mutant species of Bacillus subtilis (B38) was obtained by ultraviolet irradiation and selection under high concentration of cadmium (Cd) in a previous study. In the present study, to check the applicability of this mutated species to the sorption and immobilization of other metals, the sorption of four heavy metals, Cd, chromium (Cr), mercury (Hg), and lead (Pb), on living and nonliving B38 in single- and multiple-component systems under different conditions was investigated using batch experiments. Rapid metal binding occurred on both living and nonliving B38 during the beginning of the biosorption. The sorption kinetics followed the exponential equation for living biomass and the pseudo-first-order Lagergren model for nonliving biomass, with r 2 values in the range of 0.9004-0.9933. The maximum adsorptive quantity of the heavy metals on B38 changed with the solution pH, temperature, biomass dose, and ionic strength. The nonliving biomass generally showed greater or similar adsorptive capacities as compared with the living biomass and was not likely to be affected by the solution parameters. The bacterium had a stronger affinity to the cationic heavy metals than to the anionic one, and the equilibrium sorption amounts were 210.6, 332.3, and 420.9 mg/g for Cd(II), Hg(II), and Pb(II), respectively. The results of binary and ternary sorption experiments indicated that the metals with the higher sorption capacity in the single-component systems showed greater inhibitory effects on the biosorption of other metal ions in the multiple-component systems, but the sorption sites of Hg and Cd or Pb are likely to be different. The results of this study illustrated that the mutant species is a promising biosorbent for the remediation of multiple heavy metals.  相似文献   

4.
Heavy metal fates in laboratory bioretention systems   总被引:5,自引:0,他引:5  
Sun X  Davis AP 《Chemosphere》2007,66(9):1601-1609
Key to managing heavy metals in bioretention is to understand their fates in bioretention facilities. In this study, pot prototypes filled with bioretention media were built to simulate the conditions of natural growth of plants. Synthetic runoff with different heavy metal loadings (copper, cadmium, lead, and zinc) was periodically applied. Metal accumulations in tissues of grasses -Panicum virgatum, Kentucky-31, and Bromus ciliatus, were investigated after 230d of growth and multiple runoff treatment events. After 183d of periodic runoff application, the concentrations of Zn, Cu, Pb and Cd with low and high loadings had the same trends in the plant tissues, Zn>Cu>Pb>Cd, following the trend of the input metal concentrations. The fates of input metals were 88-97% captured in soil media, 2.0-11.6% not captured by bioretention media, and 0.5-3.3% accumulated in plants. Compared to the metals retained by the soil, the percentages of input metals taken up by plants were relatively low due to the low plant biomass produced in this study. Greater biomass density would be required for the vegetation to have a valuable impact in prolonging the lifetime of a bioretention cell.  相似文献   

5.
Bo Ngam lead mine soils contain high concentrations of lead (up 1% total Pb) and low amounts of organic matter and major nutrients (N, P, K). A glasshouse study was conducted to compare growth performance, metal tolerance and metal uptake by two grasses, Thysanolaena maxima (Roxb.) O. Kuntze and four ecotypes of Vetiveria zizanioides (L.) Nash, syn. Chrysopogon zizanioides (L.) Roberty (three from Thailand: Surat Thani, Songkhla and Kamphaeng Phet, and one from Sri Lanka) and to study the effects of pig manure (20% and 40% w/w) and inorganic fertilizer (75 and 150 mg kg(-1)) amendments to this lead mine soil. The results showed that both T. maxima and V. zizanioides (Surat Thani and Songkhla) could tolerate high Pb concentrations in soil (10750 mg kg(-1)) and had very good growth performance. Application of pig manure increased electrical conductivity (EC) and reduced DTPA-extractable Pb concentration in the soils. Pig manure application improved the growth of vetiver, especially at 20%, application dosage. Vetiver had the highest biomass. T. maxima could not tolerate high EC values. The uptake by roots and transport of Pb to shoots of both species was reduced when soils were amended with pig manure. Application of inorganic fertilizer did not improve growth of vetiver but did improve that of T. maxima. Fertilizer application did not have any great influence on the Pb uptake in vetiver while T. maxima took up more Pb as a result of the fertilizer enhancing its biomass yield. Both species transported low Pb concentrations to shoots (8.3-179 mg kg(-1)) and accumulated higher concentrations in roots (107-911 mg kg(-1)). In summary, both species may be species well suited for phytostabilization in tropical lead mine areas.  相似文献   

6.
Chemical methods and phytoremediation of soil contaminated with heavy metals   总被引:43,自引:0,他引:43  
Chen HM  Zheng CR  Tu C  Shen ZG 《Chemosphere》2000,41(1-2):229-234
The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.  相似文献   

7.
The effects of high inputs of phosphate fertiliser on Cd concentrations were studied in soil solutions extracted from topsoils. Soils were sampled along a transect at distances of 1-100 m away from a fertiliser bin. The transect was sampled four times during 1 year. Soil solutions were analysed for Cd, pH, major cations and anions, and other heavy metals (As, Cr, Cu, Pb). For one of the transect samplings, soil total Cd, Cr, Cu, Pb and P were also measured. Cd speciation in the soil solutions was calculated by the GEO-CHEM-PC computer program. Chemical composition varied substantially along the transect, and also between samplings, indicative of seasonal effects and the influence of a fresh application of superphosphate fertiliser during the year. Application of fertiliser decreased soil solution pH and increased the levels of heavy metals in soil solution. Generally, soil total Cd, Cr, Cu, Pb, and P decreased with increasing distance from the fertiliser bin. Correlations between P and the four heavy metals were: P and Cd (R2 = 0.978), P and Cr (R2 = 0.712), P and Pb (R2 = 0.538), P and Cu (R2 = 0.267). Less than 1% of the total Cd in the soil samples was found in the soil solution. The free metal ion Cd2+ accounted for 55-90% of solution Cd. Of the complexed species of Cd, the chloride and sulphate complexes were usually the most important, even when nitrate and phosphate concentrations were relatively high. The presence of As, Cr, Cu and Pb had no effect on Cd speciation.  相似文献   

8.
ABSTRACT

The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals—As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

9.
Simultaneous heavy metal removal mechanism by dead macrophytes   总被引:13,自引:0,他引:13  
The use of dead, dried aquatic plants, for water removal of metals derived from industrial activities as a simple biosorbent material has been increasing in the last years. The mechanism of simultaneous metal removal (Cd2+, Ni2+, Cu2+, Zn2+ and Pb2+) by 3 macrophytes biomass (Spirodela intermedia, Lemna minor and Pistia stratiotes) was investigated. L. minor biomass presented the highest mean removal percentage and P. stratiotes the lowest for all metals tested. Pb2+ and Cd2+ were more efficiently removed by the three of them. The simultaneous metal sorption data were analysed according to Langmuir and Freundlich isotherms. Data fitted the Langmuir model only for Ni and Cd, but Freundlich isotherm for all metals tested, as it was expected. The K(F) values showed that Pb was the metal more efficiently removed from water solution. The adsorption process for the three species studied followed first order kinetics. The mechanism involved in biosorption resulted ion exchange between monovalent metals as counter ions present in the macrophytes biomass and heavy metal ions and protons taken up from water. No significant differences were observed in the metal exchange amounts while using multi-metal or individual metal solutions.  相似文献   

10.
The goal of this study was to evaluate cadmium and lead accumulation ability of in vitro cultures biomass containing selected edible mushroom species derived from the environment (Laetiporus sulphureus, Imleria badia) and those of commercial origin (Agaricus bisporus). Atomic absorption spectrometry was used to evaluate the content of Cd(II) and Pb(II) on the medium supplemented with Cd(II) or Pb(II), each of them at the same concentration of 5·10?5 M. The highest concentration of Cd(II) ions was determined in the biomass from L. sulphureus in vitro cultures, while the highest concentration of Pb(II) ions was found in the biomass from A. bisporus in vitro cultures. The greatest Cd(II) and Pb(II) accumulation ability in mycelium per dry weight was shown for L. sulphureus. Among the test species, biomass of A. bisporus showed the lowest ability for the bioaccumulation of Cd(II); however, comparable ability for the remediation of Pb(II) was provided by the biomasses from A. bisporus and I. badia in vitro cultures. The results confirm the possibility of using these mushroom species for remediation and indicate the relationship between bioaccumulation of heavy metals and the test species.  相似文献   

11.
Tree species effect on the redistribution of soil metals   总被引:1,自引:0,他引:1  
Phytostabilization of metals using trees is often promoted although the influence of different tree species on the mobilization of metals is not yet clear. Soil and biomass were sampled 33 years after planting four tree species (Quercus robur, Fraxinus excelsior, Acer pseudoplatanus, Populus 'Robusta') in a plot experiment on dredged sediment. Poplar took up high amounts of Cd and Zn and this was associated with increased Cd and Zn concentrations in the upper soil layer. The other species contained normal concentrations of Cd, Cu, Cr, Pb and Zn in their tissues. Oak acidified the soil more than the other species and caused a decrease in the concentration of metals in the upper soil layer. The pH under poplar was lower than expected and associated with high carbon concentrations in the top soil. This might be assigned to retardation of the litter decomposition due to elevated Cd and Zn concentrations in the litter.  相似文献   

12.
EDTA强化电动力学修复重金属复合污染土壤   总被引:2,自引:0,他引:2  
在自制的电动力学装置中,研究多种重金属复合污染土壤的电动力学修复,通过在阴极添加络合剂EDTA来提高修复效率。实验结果表明,EDTA的引入提高了修复过程中的电流值,且EDTA与重金属的络合提高了污染物向电极液的迁移效率,从而强化了电动力学修复效果。在设定的浓度(0、0.01、0.02、0.05和0.1 mol/L)中,0.1 mol/L的EDTA具有最佳的修复效率。在此实验条件下,污染土壤中的总铜、总铅和总镉的去除率分别为90.2%、68.1%和95.1%。电动力学修复后,对土壤重金属进行化学形态分析,发现电动力学修复显著改变了土壤重金属存在形态,修复后土壤中的铜、铅、镉主要以较稳定的有机态和残余态形式存在,显著降低了对周边生物和环境的毒害。  相似文献   

13.
Establishing fast growing willow stands on land disposed contaminated dredged sediment can result in the revaluation of this material and opens possibilities for phytoremediation. A field trial was designed to assess the impact of planting a willow stand (Salix viminalis L. 'Orm') on the dissipation of organic contaminants (mineral oil and PAHs) in dredged sediment. In addition, the accumulation of heavy metals (Cd, Cu, Pb and Zn) in the biomass was determined. After 1.5 years, a significant decrease of 57% in the mineral oil concentration in the sediment planted with willow was observed. Degradation of mineral oil in sediment which was left fallow, was only 15%. The mineral oil degradation under willow was most pronounced (79%) in the root zone of the stand. In the sediment which was left fallow there was a significant reduction of the total PAH content by 32% compared with a 23% reduction in the planted sediment. The moderate and selective metal uptake, measured in this study, limits the prospects for phytoextraction of metals from dredged sediment.  相似文献   

14.
调理剂对堆肥产品重金属生物有效性的影响   总被引:1,自引:0,他引:1  
城市污泥中重金属含量及其生物有效性是限制污泥农用的主要因素,因此,研究污泥堆肥化处理过程中重金属生物有效性,对污泥的农用具有重要意义。实验以城市污泥为原料,以菌菇渣和秸秆为调理剂,设置4个处理:A(污泥∶菌菇渣∶秸秆=1∶0.4∶0.025)、B(污泥∶菌菇渣∶秸秆=1∶0.3∶0.025)、C(污泥∶秸秆=1∶0.12)和D(污泥∶秸秆=1∶0.09),进行好氧堆肥实验,采用BCR顺序提取法测定各种形态的重金属,研究堆肥前后重金属形态的变化规律。结果表明,城市污泥中Cu、Ni、Pb和Cr主要以可氧化态及残渣态存在,生物有效性较低,而Zn和Cd主要以酸溶态和可还原态存在,生物有效性较高;堆肥过程显著降低了Cu、Zn、Ni和Pb的生物有效性,并改变了Cu、Zn、Ni、Pb、Cr和Cd的形态分布,使污泥中的Cu、Zn、Ni、Pb和Cd向着更稳定的可氧化态或残渣态转变;污泥经过堆肥处理后,Cu、Zn和Ni 3种重金属生物有效性关系为:ABCD,与其他处理相比,处理A残渣态的Pb和Cr增加比例较多,综合来看,处理A对重金属生物有效性的降低最为明显,重金属钝化效果最佳。  相似文献   

15.
浮游球衣菌对Pb2+、Cu2+、Zn2+、Cd2+的吸附性能研究   总被引:8,自引:0,他引:8  
研究了浮游球衣菌(Sphaerotilus natans)在不同吸附条件下对溶液中Pb^2+、Cu^2+、Zn^2+、Cd^2+的吸附规律。结果表明,Sphaerotilus natans对这4种重金属离子均有一定的吸附作用,并在20min内达到吸附平衡,pH对吸附过程影响较大,pH为5.5时Sphaerotilus natans对这4种金属离子的吸附效果最好,Sphaerotilus natans对它们的吸附选择性为Pb^2+〉Cu^2+〉Zn^2+〉Cd^2+,Pb^2+、Cu^2+能部分置换出已被菌体吸附的Zn^2+、Cd^2+。HCI和EDTA溶液可有效地将金属离子从菌体上解吸下来,解吸后的菌体可重复使用。  相似文献   

16.
Leung HM  Ye ZH  Wong MH 《Chemosphere》2007,66(5):905-915
A field survey of metal concentrations and arbuscular mycorrhizal (AM) components of plants growing on five mining sites was conducted in Chenzhou City, Hunan Province, Southern China and a control site in Hong Kong. Significant differences were observed in the average concentrations of total heavy metals (Pb, Zn, Cu, Cd) and one metalloid (As) in contaminated soils compared with the control site. Gramineae and Compositae were the dominant plant families growing on mine tailings, with Chrysanthemum moritolium (common chrysanthemum), Cynodon dactylon (Bermuda grass), Miscanthus florodulus (Sword grass) and Pteris vittata (Ladder brake fern) commonly found at all sites. AM fungal colonization was detected in most of the plants. Comparing the four common plant species, three components of mycorrhizal colonization (arbuscules, vesicles and coiled hyphae) were found in the roots of C. dactylon and P. vittata growing at Do Shun Long (DSL) mine site. Concentrations of As in fronds were 24-fold higher than in roots of P. vittata with the highest mycorrhizal colonization rate (73%) among all sampling sites. Extensive mycorrhizal colonization (85%) was also recorded in the roots of C. dactylon with As accumulation 57 times higher than in shoots. The four common plants found in metal contaminated sites had developed different strategies for survival in the contaminated sites with the aid of indigenous AM fungi.  相似文献   

17.
Concentrations of Hg, Pb, Cd, and Cr in 240 shellfish including oyster, short-necked clam, razor clam, and mud clam collected from six administrative regions in Xiamen of China were measured. The daily intakes of heavy metals through the consumption of shellfish were estimated based on both of the metal concentrations in shellfish and the consuming amounts of shellfish. In addition, the target hazard quotients (THQ) were used to evaluate the potential risk of heavy metals in shellfish on human body. Results showed that the concentrations of heavy metals in shellfish ranged at the following sequence: Cr > Cd > Pb > Hg. The concentrations of Hg and Pb in most samples were below the limits (0.3 mg?kg?1 for Hg and 0.5 mg?kg?1 for Pb) of national standard (GB 18406.4-2001) set in China. About 57 % of samples were found to contain more than 0.1 mg?kg?1 of Cd, in which the highest level was found in oyster from Xiangan with a value of 1.21 mg?kg?1. The average concentrations of Cd in oyster and mud clam samples were 0.338 and 0.369 mg?kg?1, respectively, which were significantly higher (p?<?0.05) than those in the samples of short-necked clam and razor clam. The highest concentration of Cr was found to present in short-necked clam from Jimei with a value of 10.4 mg?kg?1, but a mean value of 1.95 mg?kg?1 in all the shellfish was observed, and no significant difference was found among the different sampling regions. The calculated daily intakes of Hg, Pb, Cd, and Cr through consuming the shellfish were 0.005, 0.122, 0.137, and 1.20 μg?kg?1 day?1, respectively, which accounted for 2.19, 3.42, 13.7, and 40.1 % of the corresponding tolerable limits suggested by the Joint FAO/WHO Expert Committee on Food Additives. The THQ values of the four metals were far below 1 for most samples, except for those of Cd and Cr in the four shellfish species with the mean values of 0.132 and 0.385, respectively. The highest THQ values of Cd were observed in the species of oyster (0.719) and mud clam (0.568). But the high THQ values of Cr observed in all the four species were derived from the applied reference dose (RfD) data of Cr(VI) due to the unavailable RfD value of total Cr. The results indicate that the intakes of heavy metals by consuming shellfish collected from Xiamen of China do not present an appreciable hazard risk on human health, but attention should be paid to consuming those with relatively high THQ values, such as oyster, mud clam, and short-necked clam.  相似文献   

18.
Gil C  Boluda R  Ramos J 《Chemosphere》2004,55(7):1027-1034
This study determines total levels of three (Cd, Pb and Ni) potentially toxic trace elements in western Almería (Spain) greenhouse surface soil horizons using microwave digestion; it establishes the geochemical baseline concentration, and it investigates possible relationships between soil properties and elemental concentrations. The results show that the soil concentration of these heavy metals is lower than mentioned in the European and Spanish normative, but they are higher than those reported by other authors working on agricultural soils. The obtained geochemical baseline concentrations (mg kg(-1)) were: Cd 0.4-0.8, Pb 2.5-89.9 and Ni 16.1-30.7. Using the upper baseline criterion, 88% of greenhouse soils have relatively higher content of heavy metals because of their Cd, Pb and Ni concentration. Moreover, soil properties are related to heavy metals contents suggesting that among Cd, Pb and Ni have a similar origin and those total metal concentrations are controlled primarily by soil compositions.  相似文献   

19.
Wobst M  Wichmann H  Bahadir M 《Chemosphere》2001,44(5):981-987
The distribution behavior of Pb, Cd, Fe, Cu, Mo and Zn was determined in a laboratory-scale incinerator. Points of interest were the influence of the temperature and combustion atmosphere on the emission rates of those metals, orientating at frequent combustion conditions of accidental fires. The experiments were carried out at 600 degrees C and 800 degrees C in N2, air, N2 + HCl and air + HCl atmospheres. Furthermore, the influence of the matrix (quartz, polyethylene and cellulose powder) on the distribution behavior of the heavy metals was investigated as well. It was determined whether the distribution behavior of Cu, Pb and Cd were affected by the other heavy metals. In conclusion, it was found that in air and N2 atmosphere a temperature increase from 600 degrees C to 800 degrees C and the addition of the matrix had no effect on the evaporation rates of the heavy metals, except for Cd. Addition of gaseous HCl led to increased evaporation of the heavy metals. The increase of the evaporation rates during the experiments with matrix was higher for Fe, remained the same for Pb, Cd, Zn, and lower for Mo and Cu compared to the experiments without matrix.  相似文献   

20.
Background Aquatic environments are often exposed to various pollutants like heavy metals that are released from industrial, agricultural and domestic wastes. Emissions of heavy metals can then enter all ecosystems and bring about severe problems in plants, especially algae depending on the concentrations of a given element. The objective of the investigation presented is to detect toxic effects due to some heavy metals in the biomass of green alga Scenedesmus quadricauda. Methods All experiments were conducted with axenic cultures of the green alga Scenedesmus quadricauda (Turp.) de Brebisson (Chlorococcales, Chlorophyta). The cultures were grown in Chu-no.10 medium, and optimum physical and chemical growth conditions were provided to get higher growth rates and lower doubling times of cells. Growth of the micro algal cultures was measured on a daily schedule by counting cultures and determination of chlorophyll-a. The sterile-filtered heavy metal concentration solutions (Cd, Pb and Cu) were prepared and added as stock solutions of their salts (CdCl2*2.5 H2O, Pb(NO3)2*H2O and CuSO4*5 H2O). Results and Discussion The growth decreased gradually with the alga exposed to Cd at 0.05, 0.1, and 0.5 mg/L in comparison with the control whereas 1 mg/L Cd2+ had a clearly destructive effect. The growth was decreased with Pb at 15, 20 and 25 mg/L gradually, while at 30 mg/L the effect was more pronounced. When Cu was used, the growth was increased gradually at 0.5, 1 and 1.5 mg/L and vice versa at 2 mg/L. Conclusion There were differences in toxic effects of the metals with different metal as well as their concentrations and the time of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号