首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of pyrene added in a single application (0, 50, 100 and 200 mg kg(-1)) was investigated in multiple applications (1 x 50, 2 x 50 and 4 x 50 mg kg(-1)) on the evolution of catabolic activity in a pristine pasture soil. The microbial community's ability to degrade pyrene was assessed at 0, 4, 8 and 12 weeks by the mineralization of added 14C-pyrene. Significant mineralization (>5%) of added 14C-pyrene only occurred after 4 weeks soil-pyrene contact time in most of the pyrene-amended soils. Pyrene-amended soils showed statistically significantly shorter (P<0.05) lag times compared to the control soil after 8 and 12 weeks soil-pyrene contact time. Further, the rates of degradation increased in the presence of pyrene, peaking at 8 weeks. In terms of the overall extents of pyrene mineralization, there were statistically significant increases (P<0.05) between 4 and 8 weeks, with little difference between 8 and 12 weeks, with the general trend that an increase in pyrene concentration resulted in higher levels of mineralization. Increasing the concentration and number of pyrene additions can have a significant impact on the adaptation of the soil microflora to degrade pyrene over time.  相似文献   

2.
Ryegrass (Lolium perenne) and alfalfa (Medicago sativa) were planted in pots to remediate pyrene contaminated quartz sand (as a control group), alluvial and red soils amended with and without compost. The pyrene degradation percentages in quartz sand, alluvial soil, and red soil amended with compost (5%, w/w) and planted with ryegrass and alfalfa for 90 d growth were 98-99% and 97-99%, respectively, while those of pyrene in the corresponding treatments amended without compost but planted with ryegrass and alfalfa were 91-96% and 58-89%, respectively. Further, those of pyrene in the respective treatments amended with and without compost but unplanted were 54-77% and 51-63%, respectively. Pyrene contents in both roots and aboveground parts of ryegrass and alfalfa after 90 d growth in quartz sand and the two soils amended with or without compost were trace amounts. Statistical analyses for the parameters of ryegrass planted in red and alluvial soils including the concentrations of total water-soluble volatile low molecular weight organic acids, microbial population, pyrene degradation percentage, and spiked pyrene concentration show significant correlations at 5% and mostly 1% probability levels, by the analysis of variance. It was thus suggested that the interactions among the consortia of plant root exudates, microorganisms, and amended compost in rhizosphere soils could facilitate bioavailability of pyrene and subsequently enhance its dissipation.  相似文献   

3.
Gao Y  Zhu L 《Chemosphere》2004,55(9):1169-1178
Uptake, accumulation and translocation of phenanthrene and pyrene by 12 plant species grown in various treated soils were comparatively investigated. Plant uptake and accumulation of phenanthrene and pyrene were correlated with their soil concentrations and plant compositions. Root or shoot accumulation of phenanthrene and pyrene in contaminated soils was elevated with the increase of their soil concentrations. Significantly positive correlations were shown between root concentrations or root concentration factors (RCFs) of phenanthrene and pyrene and root lipid contents. The RCFs of phenanthrene and pyrene for plants grown in contaminated soils with initial phenanthrene concentration of 133 mgkg(-1) and pyrene of 172 mgkg(-1) were 0.05-0.67 and 0.23-4.44, whereas the shoot concentration factors of these compounds were 0.006-0.12 and 0.004-0.12, respectively. For the same soil-plant treatment, shoot concentrations and concentration factors of phenanthrene and pyrene were generally much lower than root. Translocations of phenanthrene and pyrene from shoots to roots were undetectable. However, transport of these compounds from roots to shoots usually was the major pathway of shoot accumulation. Plant off-take of phenanthrene and pyrene only accounted for less than 0.01% of dissipation enhancement for phenanthrene and 0.24% for pyrene in planted versus unplanted control soils, whereas plant-promoted biodegradation was the predominant contribution of remediation enhancement of soil phenanthrene and pyrene in the presence of vegetation.  相似文献   

4.
Plant-promoted pyrene degradation in soil   总被引:2,自引:0,他引:2  
A study was conducted to investigate the capability of nine plant species to promote the degradation of pyrene in soil. The test method allowed for analysis of the entire sample of soil. More pyrene was degraded in the presence of roots of all nine species than in unplanted soil. Within approximately 8 weeks, as much as 74% of the pyrene disappeared from vegetated soil compared to 40% or less from unplanted soil. The data suggest that some of the test species may be especially useful for phytoremediation of soils contaminated with PAHs.  相似文献   

5.
The microbial degradation of 14C-pyrene and 14C-benzo[a]pyrene by a bacterial mixed culture was studied within a mixture of the PAHs phenanthrene, anthracene, pyrene, fluoranthene, and benzo[a]pyrene as sole carbon source in the different culture systems: (i) liquid medium, (ii) soil slurry (surface and grinding influence), and (iii) soil. The fate of these two labeled compounds was followed in these systems with an emphasis on mineralization to carbon dioxide, extractability, and adsorption to humic materials and formation of unextractable residual. Mineralization showed the most obvious differences: soil slurries achieved the best results both concerning the extent of mineralization and the time required. The highest extent of pyrene mineralization (54% within 21 days) was observed in soil slurries; in liquid media, pyrene mineralization was slower, but reached approximately the same extent (54% in 150 days); in soils, mineralization reached only 36% of added pyrene after 160 days. Benzo[a]pyrene was mineralized in a mixture of PAHs in soil slurries to an extent of 34% within 70 days, whereas mineralization in liquid medium and soil occurred in the range of 5% (70 days). Mineralization of benzo[a]pyrene in sand slurries was lower compared to soil slurries (19% in sand slurries vs. 32% in soil slurries within 50 days).  相似文献   

6.
The adaptation of two similar soils to pyrene catabolism   总被引:4,自引:0,他引:4  
The development of pyrene catabolic activity was assessed in two similar soils (pasture and woodland) amended with 100 mg pyrene kg(-1) In the pasture and woodland soils, significant mineralisation of 14C-pyrene was observed after 8 and 76 weeks soil-pyrene contact times, respectively. In both soils, there were significant decreases (P<0.05) in the lag times and significant increases (P <0.05) in the maximum rates and extents of 14C-pyrene mineralised with increasing soil-pyrene contact time. A microbial inoculum was added to the woodland soil to assess if the previously added, but undegraded 14C-pyrene was bioavailable at 16 and 24 weeks. This resulted in the immediate mineralisation of the previously added 14C-pyrene, indicating that it was bioavailable but that the microbial community in the woodland soil had not developed the ability to mineralise pyrene. The relative contributions of the indigenous microflora to 14C-pyrene mineralisation were assessed by the addition of celective inhibitors, with bacteria seeming to be responsible for the mineralisation of pyrene in both soils. It is suggested that the rate of pyrene-transfer from the soil to the microorganisms was lower in the woodland soil due to its higher organic matter content.  相似文献   

7.
Fan S  Li P  Gong Z  Ren W  He N 《Chemosphere》2008,71(8):1593-1598
Pot experiment was conducted to evaluate the phytoremediation of pyrene-contaminated soil using alfalfa (Medicago sativa L.). Alfalfa biomasses, microbial viable counts, dehydrogenase activity, residual pyrene concentration and pyrene removal percentage were determined after 60 days of alfalfa growth. The results indicated that pyrene had an inhibitive effect on alfalfa growth, and higher pyrene concentration seriously affected alfalfa growth. In addition, the inhibitive effect on the root was more severe than that on the shoot. When pyrene concentration reached 492 mg kg(-1) in soil, the shoot and root biomasses were only 34% and 22% of those of alfalfa growing in non-spiked soil, respectively. The rhizospheric bacterial and fungi counts were 5.0-7.5 and 1.8-2.3 times higher than those in non-rhizosphere soil, respectively. The residual concentrations of pyrene in the rhizosphere soil were lower than those in the non-rhizosphere soil. After 60 days, 69-85% and 59-80% of spiked pyrene disappeared from the rhizosphere and non-rhizosphere soils, respectively. The removal percentage decreased with increasing pyrene concentration. However, the average removal of pyrene in the rhizosphere soil was 6% higher than that in the non-rhizosphere soil. Therefore, the presence of alfalfa roots was effective in promoting the phytoremediation of freshly added pyrene into the soil.  相似文献   

8.
Phytoremediation which is a plant based remediation process is an emerging technology for treating inorganic (heavy metals) as well as organic pollutants. It may also be suitable for remediation of sites co-contaminated with heavy metals and organics which have become more prevalent. A glasshouse experiment was carried out to investigate the effect of 50 and 100 mg kg?1 of copper or 250 and 500 mg kg?1 of pyrene and the combined effect of copper and pyrene on the growth of Brassica juncea together with the uptake and accumulation of copper as well as dissipation of pyrene. Results showed a negative effect of copper–pyrene co-contamination on shoot and root dry matter and an inhibition of copper phytoextraction. Pyrene was significantly decreased in planted and non-planted soils accounting for 90–94% of initial extractable concentration in soil planted with B. juncea and 79–84% in non-planted soil which shows that the dissipation of pyrene was enhanced with planting. The occurrence of copper tended to increase the residual pyrene in planted soil, however in the presence of high concentration of Cu (100 mg kg?1), the residual pyrene concentration in soil were similar to those in unplanted soil. This may suggest that changes in the root physiology or rhizospheric microbial activity resulting from Cu stress could be an impediment to pyrene dissipation. The inhibition of Cu phytoextraction and degradation of pyrene by B. juncea under co-contamination may reduce the viability of phytoremediation in sites containing multiple pollutants.  相似文献   

9.
Biodegradability of aged pyrene and phenanthrene in a natural soil   总被引:18,自引:0,他引:18  
Hwang S  Cutright TJ 《Chemosphere》2002,47(9):891-899
A study was conducted to evaluate the biodegradability of pyrene (PYR) and phenanthrene (PHE) aged in a natural soil. Both the single and binary systems were either biostimulated via a nutrient amendment or bioaugmented via an inoculation of the enriched bacteria and nutrients. Aging resulted in higher concentration of both compounds and smaller bacterial activity in the solution-phase. Surprisingly, the total biodegraded extent was greater in the aged soil system than in the freshly spiked system. As anticipated, biostimulation was not appropriate to attain an effective biodegradation in this study, and bioaugmentation achieved a substantial increase the total biodegradation extent. The above findings were attributed to indigenous Pseudomonas aeruginosa entering a stationary-phase during the 200-day aging and producing rhamnolipid biosurfactants. In addition, a different sampling technique (i.e., after vigorous hand-shaking) revealed a 15 times higher microbial population than the normal sampling from the stagnant solution. Therefore, PAH bioavailability in the aged soils can be underestimated when the microbial activity is determined only from the stagnant solution. Furthermore, cometabolism enhanced PYR degradation when PHE was present as a primary substrate.  相似文献   

10.
Changes in bioavailability of pyrene in three uncontaminated soils were examined under aerobic and anaerobic conditions. Three soils were aerobically aged with pyrene and [(14)C]pyrene for 63 days, then incubated with water, nitrate, or sulfate under aerobic or anaerobic conditions for one year. Under aerobic conditions, microorganisms in two soils mineralized 58-82% of the added [(14)C]pyrene. The two soils amended with nitrate were seen to have enhanced aerobic mineralization rates. In one of these soils, non-extractable pyrene was seen to decrease over the course of the study due to desorption and mineralization, nitrate amendment enhanced this effect. Under anaerobic conditions, generated with a N(2):CO(2)(g) headspace, two soils with nitrate or sulfate amendment showed an increase in extractable [(14)C]pyrene at 365 days relative to inhibited controls, presumably due to microbially mediated oxidation-reduction potential and pH alteration of the soil environment. These observations in different soils incubated under aerobic and anaerobic conditions have important implications relative to the impact of microbial electron acceptors on bioavailability and transport of non-polar organic compounds in the environment suggesting that, given enough time, under the appropriate environmental conditions, non-extractable material becomes bioavailable. This information should be considered when assessing site specific exposure risks at PAH contaminated locations.  相似文献   

11.
The efficacy of a new rhamnolipid biosurfactants mixture to enhance the removal of pyrene from a soil artificially contaminated was investigated. The molar solubilization ratio (MSR) and the partition coefficient between the micelles and water (log K(m)) were found to be 7.5 x 10(-3) and 5.7, respectively. From soil column studies, the pyrene removal increased linearly with the concentration of the injected biosurfactants solution above the effective critical micellar concentration (0.4 g L(-1)). Flushing with a 5.0 g L(-1) biosurfactants solution increased the pyrene concentration in the effluent by 178 times. At high biosurfactants' concentrations (2.5 and 5.0 g L(-1)), the cumulative pyrene recovery reached 70%. This pyrene remobilization takes place independently of the soil organic carbon solubilization. This study provides a combination of batch and column experiments in order to find the conditions for effective soil remediation using a new rhamnolipids mixture.  相似文献   

12.
Frische T  Höper H 《Chemosphere》2003,50(3):415-427
In situ bioremediation is increasingly being discussed as a useful strategy for cleaning up contaminated soils. Compared to established ex situ procedures, meaningful and reliable approaches for monitoring the remediation processes and their efficiency are of special importance. The subject of this study was the significance of two bioassays for monitoring purposes. The work was performed within the scope of a research project on the in situ bioremediation of topsoil contaminated with 2,4,6-trinitrotoluene (TNT). To evaluate changes within different experimental fields during a 17-month remediation period, the results of soil microbial assays and luminescent bacteria assays were compared with chemical monitoring data. The luminescent bacteria assays showed a significant reduction of the water-soluble soil toxicants in the treated fields. This bioassay proved to be a sensitive screening indicator of toxicity and may effectively aid the ecotoxicological interpretation of chemical monitoring data. Microbial biomass (C(mic)), the metabolic quotient (qCO2), and the ratio of microbial to organic carbon (C(mic)/C(org)) showed a highly significant correlation with total concentrations of TNT in the soil. But, in contrast to luminescent bacteria assays, this approach did not reveal any recovery of the soil at the end of the remediation period. There is clear evidence for persistent adverse effects of chronic TNT contamination on the site-specific microbial community and the local carbon cycle in the soil. The study clearly exhibits the differences between, as well as the complementary value of both bioassay approaches for monitoring short-term and long-term effects of soil contamination and the efficiency of remediation.  相似文献   

13.
BACKGROUND: A climate-controlled pot experiment was conducted to investigate the effects of planting alfalfa and applying organic fertilizer on the dissipation of benzo[a]pyrene from an aged contaminated agricultural soil. RESULTS: Short-term planting of alfalfa inhibited the dissipation of benzo[a]pyrene from the soil by 8.9%, and organic fertilizer enhanced benzo[a]pyrene removal from the soil by 11.6% compared with the unplanted and unfertilized treatments, respectively. No significant interaction was observed between alfalfa and organic fertilizer on benzo[a]pyrene dissipation. Sterilization completely inhibited the removal of benzo[a]pyrene from the soil indicating that its degradation by indigenous microorganisms may have been the main mechanism of dissipation. Furthermore, significant positive relationships were observed between benzo[a]pyrene removal and the contents of soil ammonium nitrogen, nitrate nitrogen, and total mineral nitrogen at the end of the experiment, suggesting that competition between plants and microorganisms for nitrogen may have inhibited benzo[a]pyrene dissipation in the rhizosphere of alfalfa and the addition of organic fertilizer may facilitate microbial degradation of benzo[a]pyrene in the soil.  相似文献   

14.
Dilly O  Blume HP  Sehy U  Jimenez M  Munch JC 《Chemosphere》2003,52(3):557-569
Land use and agricultural practices modify both the amounts and properties of C and N in soil organic matter. In order to evaluate land use and management-dependent modifications of stable and labile C and N soil pools, (i). organic C and total N content, (ii). microbial (C(mic)) and N (N(mic)) content and (iii). C and N mineralisation rates, termed biologically active C and N, were estimated in arable, grassland and forest soils from northern and southern Germany. The C/N-ratios were calculated for the three levels (i)-(iii) and linked to the eco-physiological quotients of biotic-fixed C and N (C(mic)/C(org), N(mic)/N(t)) and biomass-specific C and N mineralisation rate (qCO(2), qN(min)). Correlations could mainly be determined between organic C, total N, C(mic), N(mic) and C mineralisation for the broader data set of the land use systems. Generally, the mineralisation activity rate at 22 degrees C was highly variable and ranged between 0.11 and 17.67 microg CO(2)-C g(-1) soil h(-1) and -0.12 and 3.81 microg (deltaNH(4)(+)+deltaNO(3)(-))-N g(-1) soil h(-1). Negative N data may be derived from both N immobilisation and N volatilisation during the experiments. The ratio between C and N mineralisation rate differed significantly between the soils ranging from 5 to 37, and was not correlated to the soil C/N ratio and C(mic)/N(mic) ratio. The C/N ratio in the 'biologically active' pool was significantly smaller in soils under conventional farming than those under organic farming systems. In a beech forest, it increased from the L, Of to the Ah horizon. The biologically active C and N pools refer to the current microbial eco-physiology and are related to the need for being C and N use efficient as indicated by metabolic qCO(2) and qN(min) quotients.  相似文献   

15.
在温室盆栽条件下,通过单独种植紫茉莉、单独接种多环芳烃(PAHs)模式化合物芘的专性降解菌ZQ5和两者的联合修复的3种处理,对芘污染土壤的修复效果进行了研究。结果表明,经90 d修复后,植物-微生物联合修复可将人工污染土壤中的芘降解81.1%,将石油污染土壤中的芘降解50.3%,其修复效率明显高于其他2种处理,是紫茉莉修复的1.98倍,是降解菌ZQ5修复的1.39倍。ZQ5的不同接菌量对于修复60 d后的降解率影响不大。外源生物修复条件下,10~20 cm土壤的修复效率要高于5 cm土壤;自然降解条件下,5 cm土层降解率略高于其他土层。  相似文献   

16.
Creosote-contaminated soil samples from the Libby Ground Water Contamination Superfund Site in Libby, MT, were amended with the potential alternate electron acceptors (AEA) nitrate (KNO3), manganese oxide (MnO2), and amorphous iron oxyhydroxide (FeOOH) and incubated at low oxygen tensions (0-6% O2). The fate of 14C-pyrene was evaluated with respect to the different soil amendments. The fate of 14C from the radiolabeled pyrene with regard to mineralization and bound residue formation within soil humic fractions was not significantly different from controls for the iron and manganese amended soils. Nitrate amendments appeared to stimulate 14C-pyrene mineralization at a level of 170 mg NO3-N kg(-1), and inhibit mineralization at 340 mg NO3-N kg(-1). The stimulatory effect did not appear to be the result of nitrate serving as an electron acceptor. Although AEA amendments did not significantly affect the rate or extent of 14C-pyrene mineralization, results of oxygen-deprived incubations (purged with N2) indicate that AEA may be utilized by the microbial community in the unsaturated contaminated soil system.  相似文献   

17.
Muhammad A  Xu J  Li Z  Wang H  Yao H 《Chemosphere》2005,60(4):508-514
A study was conducted to evaluate the effects of different concentrations of lead (Pb) and cadmium (Cd) applied as their nitrates on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), and substrate utilization pattern of soil microbial communities. The C(mic) and N(mic) contents were determined at 0, 14, 28, 42 and 56 days after heavy metal application (DAA). The results showed a significant decline in the C(mic) for all Pb and Cd amended soils from the start to 28 DAA. From 28 to 56 DAA, C(mic) contents changed non-significantly for all other treatments except for 600 mgkg(-1) Pb and 100 mgkg(-1) Cd in which it declined significantly from 42 to 56 DAA. The N(mic) contents also decreased significantly from start to 28 DAA for all other Pb and Cd treatments except for 200 mgkg(-1) Pb which did not show significant difference from the control. Control and 200 mgkg(-1) Pb had significantly lower soil microbial biomass C:N ratio as compared with other Pb treatments from 14 to 42 DAA, however at 56 DAA, only 1000 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. No significant difference in C:N ratio for all Cd treated soils was seen from start to 28 DAA, however from 42 to 56 DAA, 100 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. On 56 DAA, substrate utilization pattern of soil microbial communities was determined by inoculating Biolog ECO plates. The results indicated that Pb and Cd addition inhibited the functional activity of soil microbial communities as indicated by the intensity of average well color development (AWCD) during 168 h of incubation. Multivariate analysis of sole carbon source utilization pattern demonstrated that higher levels of heavy metal application had significantly affected soil microbial community structure.  相似文献   

18.
Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of (14)C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% (14)CO(2) when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02.  相似文献   

19.
A microcosm experiment was conducted to investigate the dissipation of available benzo[a]pyrene (BaP) in soils co-contaminated with cadmium (Cd) and pyrene (PYR) during aging process. The available residue of BaP in soil was separated into desorbing and non-desorbing fractions. The desorbing fraction contributed more to the dissipation of available BaP than the non-desorbing fraction did. The concentration of bound-residue fraction of BaP was quite low across all treatments. Within the duration of this study (250 days), transformation of BaP from available fractions to bound-residue fraction was not observed. Microbial degradation was the dominant mechanism of the dissipation of available BaP in the soil. The dissipation of available BaP was significantly inhibited with the increment in Cd level in the soil. The addition of PYR (250 mg kg?1) remarkably promoted the dissipation of available BaP without reducing Cd availability in the soil. The calculated half-life of available BaP in the soil prolonged with the increment in Cd level; however, the addition of PYR shortened the half-life of available BaP by 13.1, 12.7, and 32.8 % in 0.44, 2.56, and 22 mg Cd kg?1 soils, respectively. These results demonstrated that the inhibiting effect of Cd and the promoting effect of PYR on the dissipation of available BaP were competitive. Therefore, this study shows that the bioremediation process of BaP can be more complicated in co-contaminated soils.  相似文献   

20.
Phytoremediation is a promising technique for cleaning petroleum contaminated soils. In this study, the effects of two grass species (Festuca arundinacea Schreb. and Festuca pratensis Huds.), infected (E(+)) and non-infected (E(-)) by endophytic fungi (Neotyphodium coenophialum and Neotyphodium uncinatum, respectively) on the degradation of petroleum hydrocarbons in an aged petroleum contaminated soil was investigated. Plants were grown in the soil for 7 months and unplanted soil considered as control. At the end of the experiment, total and oil-degrading bacteria, dehydrogenase activity, water-soluble phenols, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) contents were measured in the soil. The results demonstrated that E(+) plants contained more root and shoot biomass than E(-) plants and created higher levels of water-soluble phenols and dehydrogenase activity in the soil, while there was no significant difference in bacterial counts of planted soils. Planting stimulated total and oil-degrading bacterial numbers, dehydrogenase activity and the soil content of water-soluble phenols. Regardless of endophyte infection, PAH and TPH removal in the rhizosphere of plants were 80-84 and 64-72% respectively, whereas the removals in controls were 56 and 31%, respectively. It was revealed that TPHs in retention time range of n-alkanes with C(10)-C(25) chain lengths and TPH were more degraded in the rhizosphere of E(+) plants compared to E(-) ones. Thus, grasses infected with endophytic fungi could be more efficient for removal of TPH from oil-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号