首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L. J. McCook 《Marine Biology》1997,129(4):713-722
A combination of small-scale transplants and herbivore exclusion was used to test the importance of herbivory, physiological tolerance limits, and recruitment and dispersal in regulating the distribution and abundance of the genus Sargassum on two nearshore fringing reefs of the central Great Barrier Reef, during 1992/1993. Sargassum (predominantly S. oligocystum and S. tenerrimum) were transplanted from reef-flat zones where they normally grow, to a seaward coral zone where they are not normally found. At Great Palm Island, coral-zone transplants only survived if protected from herbivores. At Brook Island, survival of uncaged coral-zone transplants was more variable but not significantly lower than plants returned to the Sargassum zone. Thus herbivory may be a major cause of the zonation patterns of adult Sargassum on these fringing reefs, but the importance of this factor varies between and within reefs. Since protected Sargassum survived and grew for up to 6 mo in the coral zone, the adult algae are not physiologically limited by any physical or chemical differences between zones. However, Sargassum recruitment to the coral zone was very low (mean 2.7 recruits m−2 over 13 mo), and was not significantly affected by herbivores. Since rates of herbivory were relatively slow, effective exclusion of Sargassum from the coral zone by herbivores may depend on low recruitment of the algae. In a broader context, the distribution of Sargassum may depend on the combined spatial patterns of herbivory and recruitment. Received: 24 January 1997 / Accepted: 12 May 1997  相似文献   

2.
Two blennies, Ecsenius lineatus Klausewitz and Ecsenius namiyei (Jordan and Evermann), and a cohabiting territorial damselfish, the Pacific gregory, Stegastes fasciolatus (Ogilby), were collected from shallow reefs in northern Taiwan between September and November 2004, and in October 2005 for stomach content and δ 13C and δ 15N analyses in an effort to study how extensively their food sources overlapped and to delineate the pattern of cohabiting interactions. These analyses showed differences in food use between the Ecsenius blennies and S. fasciolatus. However, there were inconsistencies. Epiphytic algae were their major food items of E. namiyei and E. lineatus. Macroalgae were rarely taken. Nevertheless, δ 13C and δ 15N signatures suggested that E. namiyei and E. lineatus might have assimilated mainly macroalgae-derived detritus instead of epiphytic algae. In contrast, macroalgae were the major food items of S. fasciolatus, followed by epiphytic algae. Differences in both δ 13C and 15N values indicated that for S. fasciolatus, algae (both macroalgae and epiphytic algae) might not be as important as the stomach contents showed. Instead, polychaetes were possibly its major food source. Differences between stomach contents and evidence from the separation of stable isotope signatures between blennies and the Pacific gregory indicate that some of the interspecific interactions derived from exploitative competition may have been alleviated. Moreover, their widespread territory overlap is possibly a sign of mutualism: S. fasciolatus allows territory sharing, while Ecsenius blennies, in return, clean up the algal mat by removing sand and detritus.  相似文献   

3.
Larval growth rate and settlement of the European flat oyster Ostrea edulis were experimentally studied as a function of the composition of dietary fatty acids. Diets differing in fatty acid composition were composed by mixtures of the microalgae Isochrysis galbana, Pavlova lutheri and Chaetoceros calcitrans. Fatty acid content in the tissue of the feeding larvae, analyzed by gas chromatography and mass spectrometry, reflected the composition in the diet. Larval growth rate was significantly correlated to the three omega-3 polyunsaturated fatty acids (PUFA) C18:3, C18:4 and C22:6, with minor differences for neutral and polar lipids. No relation between growth rate and the omega-3 PUFA C20:5 was detected, a PUFA often implied as essential for bivalves. It is suggested that naturally occurring variability in fatty acid composition may constrain larval growth. In settlement experiments in both still water and flume flow little substrate selectivity was found for some contrasting substrates. It is concluded that differences in dietary fatty acids may explain as much of settlement success as the variability of substrates. Received: 12 October 1998 / Accepted: 6 April 1999  相似文献   

4.
As intermediaries, some heterotrophic protists can enhance the content of the long chain n-3 essential fatty acids (LCn-3EFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), of low food quality algae for subsequent use at higher trophic levels. However, the mechanisms that produce LCn-3EFAs are presently unknown, although LCn-3EFA production by heterotrophic protists at the phytoplankton–zooplankton interface may potentially affect the nutritional status of the pelagic system. We investigated whether the heterotrophic protists, Oxyrrhis marina and Gyrodinium dominans, produce LCn-3EFAs via elongation and desaturation of dietary LCn-3EFA precursors and/or synthesize LCn-3EFAs de novo by: (1) feeding the two heterotrophic protists with a prey deficient in n-3 fatty acids, (2) incubating them in medium containing 13C-labeled sodium acetate, and (3) feeding the two protists gelatin acacia microspheres (GAMs) containing a deuterium-labeled LCn-3EFA precursor, linolenic acid [18:3(n-3)-d4]. Both O. marina and G. dominans synthesized EPA and DHA when fed the n-3 fatty acid-deficient prey, Perkinsus marinus, a parasitic protozoan. O. marina, but not G. dominans utilized 13C-labeled acetate from the medium to produce uniformly labeled fatty acids, including DHA. Both heterotroph species consumed GAMs containing 18:3(n-3)-d4 and catabolized 18:3(n-3)-d4 to 16:3(n-3)-d4 and 14:3(n-3)-d4, while no 20 or 22 carbon metabolites of 18:3(n-3)-d4 were detected. These results suggest that O. marina and G. dominans do not elongate and desaturate dietary LCn-3EFA precursors to produce LCn-3EFAs, but rather they produce LCn-3EFAs de novo, possibly via a polyketide synthesis pathway.  相似文献   

5.
To test whether heterotrophic protists modify precursors of long chain n−3 polyunsaturated fatty acids (LCn−3PUFAs) present in the algae they eat, two algae with different fatty acid contents (Rhodomonas salina and Dunaliella tertiolecta) were fed to the heterotrophic protists Oxyrrhis marina Dujardin and Gyrodinium dominans Hulbert. These experiments were conducted in August 2004. Both predators and prey were analyzed for fatty acid composition. To further test the effects of trophic upgrading, the calanoid copepod Acartia tonsa Dana was fed R. salina, D. tertiolecta, or O. marina that had been growing on D. tertiolecta (OM-DT) in March 2005. Our results show that trophic upgrading was species-specific. The presence of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the heterotrophic protists despite the lack of these fatty acids in the algal prey suggests that protists have the ability to elongate and desaturate 18:3 (n−3), a precursor of LCn−3PUFAs, to EPA and/or DHA. A lower content of these fatty acids was detected in protists that were fed good-quality algae. Feeding experiments with A. tonsa showed that copepods fed D. tertiolecta had a significantly lower content of EPA and DHA than those fed OM-DT. The concentration of EPA was low on both diets, while DHA content was highest in A. tonsa fed R. salina and OM-DT. These results suggest that O. marina was able to trophically upgrade the nutritional quality of the poor-quality alga, and efficiently supplied DHA to the next trophic level. The low amount of EPA in A. tonsa suggests EPA may be catabolized by the copepod.  相似文献   

6.
The lipid composition of tropical marine reef fishes is poorly known, despite their use as food by local human populations and recent interest in health-related benefits of fish lipids. We examined the composition of lipids from epaxial muscle, liver, and two storage sites [mesenteries surrounding the gut (intraperitoneal fat, IPFs) and retroperitoneal fat bodies (FBs) posterior to the peritoneal cavity] in three species of surgeonfishes from Ishigaki Island, Japan: Naso lituratus (Bloch and Schneider, 1801), Acanthurus lineatus (Linnaeus, 1758), and A. bariene (Lesson, 1830). Triacylglycerols dominated all samples of neutral lipid and constituted ≥ 99% of FBs and IPFs. Polar lipids generally contained large fractions of phosphatidylethanolamine and phosphatidylcholine. Quantified fatty acids ranged in length from C14 to C24. C16 fatty acids prevailed (>35% of neutral fatty acids, >23% of polar fatty acids), although C18 (>16 and >14%, respectively) and C20 acids (>8 and >19%, respectively) were also common. Saturated fatty acids, dominated by palmitic acid (16:0), comprised 38.7 to 50.7% of acids from neutral lipids and 30.8 to 41.1% from polar lipids. The most common monounsaturated acids were 18:1n9 and 20:1n9. Polyunsaturated acids were prevalent in polar lipids (especially 20:4n6, 20:5n3, 22:2n3, 22:5n3, 22:5n6 and 22:6n3). Common polyunsaturated acids of neutral lipids were 18:2n6, 18:4n3, several n-3 and n-6 C20 acids, 22:2n3 and 22:5n3. IPF and FB were almost identical across species, and lipids of fat bodies (IPFs, FBs) were more similar to those of muscle than those of liver for all three species. The FBs appear to constitute an accessory storage site, which overcomes constraints on lipid storage imposed by a small, inflexible abdominal cavity that contains both viscera and consistently voluminous gut contents. Fatty acid signatures indicate that largely overlooked epiphytic or epilithic diatoms contribute significantly to lipid acquisition. The combination of large quantities of both saturated and n-3 and other polyunsaturated fatty acids in surgeonfishes, in contrast to low saturates and high polyunsaturated acids in lipids of commercially important cool-water fishes, suggests that a study of dietary effects of fish lipids on human inhabitants of the tropics may be instructive insofar as human health and nutrition are concerned. Received: 16 March 1998 / Accepted: 6 August 1998  相似文献   

7.
Seasonal lipid dynamics of various developmental stages were investigated in Pseudocalanus minutus and Oithona similis. For P. minutus, the dominance of 16:1(n−7), 16:4(n−3) and 20:5(n−3) fatty acids indicated a diatom-based nutrition in spring, whereas 22:6(n−3), 16:0, 18:2(n−6) and 18:1(n−9) pointed to a flagellate-based diet during the rest of the year as well as omnivorous/carnivorous low-level feeding during winter. The shorter-chain fatty alcohols 14:0 and 16:0 prevailed, also reflecting biosynthetic processes typical of omnivores or carnivores. Altogether, the lipid signatures characterized P. minutus as an opportunistic feeder. In contrast, O. similis had consistently high amounts of the 18:1(n−9) fatty acid in all stages and during all seasons pointing to a generally omnivorous/carnivorous/detritivorous diet. Furthermore, the fatty alcohol 20:1(n−9) reached high percentages especially in adult females and males, and feeding on Calanus faecal pellets is suggested. Fatty alcohols, as wax ester moieties, revealed significant seasonal variations in O. similis and a seasonal trend towards wax ester accumulation in autumn in P. minutus. P. minutus utilized its lipid deposits for development in the copepodite stages III and IV and for gonad maturation in CV and females during the dark season. However, CVs and females depended on the spring phytoplankton bloom for final maturation processes and reproduction. O. similis fueled gonad maturation and egg production for reproduction in June by wax esters, whereas reproduction in August/September co-occurred with the accumulation of new depot lipids. Both species revealed significantly higher wax ester levels in deeper (>50 m) as compared to surface (0–50 m) dwelling individuals related to a descent prior to overwintering.  相似文献   

8.
Bacterial abundance, production, and extracellular enzyme activity were determined in the shallow water column, in the epiphytic community of Thalassia testudinum, and at the sediment surface along with total carbon, nitrogen, and phosphorus in Florida Bay, a subtropical seagrass estuary. Data were statistically reduced by principle components analysis (PCA) and multidimensional scaling and related to T. testudinum leaf total phosphorus content and phytoplankton biomass. Each zone (i.e., pelagic, epiphytic, and surface sediment community) was significantly dissimilar to each other (Global R = 0.65). Pelagic aminopeptidase and sum of carbon hydrolytic enzyme (esterase, peptidase, and α- and β-glucosidase) activities ranged from 8 to 284 mg N m−2 day−1 and 113–1,671 mg C m−2 day−1, respectively, and were 1–3 orders of magnitude higher than epiphytic and sediment surface activities. Due to the phosphorus-limited nature of Florida Bay, alkaline phosphatase activity was similar between pelagic (51–710 mg P m−2 day−1) and sediment (77–224 mg P m−2 day−1) zones but lower in the epiphytes (1.1–5.2 mg P m−2 day−1). Total (and/or organic) C (111–311 g C m−2), N (9.4–27.2 g N m−2), and P (212–1,623 mg P m−2) content were the highest in the sediment surface and typically the lowest in the seagrass epiphytes, ranging from 0.6 to 8.7 g C m−2, 0.02–0.99 g N m−2, and 0.5–43.5 mg P m−2. Unlike nutrient content and enzyme activities, bacterial production was highest in the epiphytes (8.0–235.1 mg C m−2 day−1) and sediment surface (11.5–233.2 mg C m−2 day−1) and low in the water column (1.6–85.6 mg C m−2 day−1). At an assumed 50% bacterial growth efficiency, for example, extracellular enzyme hydrolysis could supply 1.8 and 69% of epiphytic and sediment bacteria carbon demand, respectively, while pelagic bacteria could fulfill their carbon demand completely by enzyme-hydrolyzable organic matter. Similarly, previously measured T. testudinum extracellular photosynthetic carbon exudation rates could not satisfy epiphytic and sediment surface bacterial carbon demand, suggesting that epiphytic algae and microphytobenthos might provide usable substrates to support high benthic bacterial production rates. PCA revealed that T. testudinum nutrient content was related positively to epiphytic nutrient content and carbon hydrolase activity in the sediment, but unrelated to pelagic variables. Phytoplankton biomass correlated positively with all pelagic components and sediment aminopeptidase activity but negatively with epiphytic alkaline phosphatase activity. In conclusion, seagrass production and nutrient content was unrelated to pelagic bacteria activity, but did influence extracellular enzyme hydrolysis at the sediment surface and in the epiphytes. This study suggests that seagrass-derived organic matter is of secondary importance in Florida Bay and that bacteria rely primarily on algal/cyanobacteria production. Pelagic bacteria seem coupled to phytoplankton, while the benthic community appears supported by epiphytic and/or microphytobenthos production.  相似文献   

9.
Ecological and physiological studies focused on dietary preferences, lipid biochemistry and energetics within the three Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica from meso- and bathypelagic depths. Eukrohnia hamata and E. bathypelagica respired 0.15 μL O2 mg dry mass (DM)−1 h−1, which translates to an average metabolic loss of only <1.1% of body carbon per day. Lipid storage was not substantial in E. bathypelagica (mean 11.5 ± 6.5% DM) and E. bathyantarctica (mean 15.4 ± 4.1% DM) during summer and winter, suggesting year-round feeding of these predators mainly on copepods. In E. bathypelagica, total fatty acids were dominated by the fatty acids 16:0, 20:5(n-3) and 22:6(n-3) and in E. bathyantarctica also by 18:1(n-9), a fatty acid usually found in storage lipids. Only the latter species was characterized by significant amounts of wax esters, consisting largely of the common fatty alcohols 16:0, 20:1(n-9) and the unusual fatty alcohol isomer 22:1(n-9).  相似文献   

10.
Herbivory is widely acknowledged as a key process determining the benthic community structure and resilience of coral reefs. Despite numerous studies that have examined herbivory across reef gradients in the Caribbean, few studies have directly quantified this process on Pacific reefs. Bioassays of two species of erect macroalgae (Sargassum swartzii and S. cristaefolium) were used to quantify variation in grazing intensity across seven habitats of varying depth and wave exposure on a mid-shelf reef in the northern Great Barrier Reef. Removal rates of Sargassum varied significantly among habitats, with both species displaying broadly similar patterns. The shallow habitats on the exposed aspect of the reef (i.e. reef crest, flat and back reef) experienced the highest reductions in mass (81.4–91.6% day−1) for both S. swartzii and S. cristaefolium, while the deeper exposed habitats (reef slope and base) displayed the lowest reductions (3.8–13.4% day−1) over a 24 h period. In contrast, the grazing intensity varied between the two species in the three habitats on the leeward aspect of the reef. Reductions in mass remained relatively high for S. swartzii on the patch reef and sheltered reef base and flat (62.7–76.5% day−1) but were considerably lower for S. cristaefolium (37.9–63.5% day−1) across the same habitats. Surprisingly, the rates of removal of Sargassum displayed no relationship with the density or biomass of roving herbivorous fishes or those species known to consume erect macroalgae, either collectively or independently. These results suggest that the relationship between browsing rates and herbivorous fish biomass is complex and may be driven by species that are underestimated in visual surveys. Direct quantification of browsing intensity using assays revealed a different pattern to inferences based on herbivore densities and highlights the potential difficulties of evaluating ecosystem processes based on visual census data alone.  相似文献   

11.
Fatty acid analyses are emerging as a powerful technique to probe trophic interactions between organisms. In this paper, the application of both this procedure and gonad index (GI) determination on two populations (intertidal and subtidal) of the echinoid Psammechinus miliaris is reported. The investigation spanned the 3-month spawning period of Scottish west coast populations. In both populations a progressive decrease in the GI was found, coupled with an increasing maturity stage (from mature to spent). Sexual maturation and decrease in GI was synchronous between the two populations. In conjunction, there were distinct changes in gonad biochemistry. Differences in the fatty acid composition of the gonad reflected the changes in sexual maturation. Mature males and females had significant differences in the fatty acid composition of their gonads, whereas post-spawned individuals showed no gender differences. Male urchins had higher levels of polyunsaturated fatty acids (PUFAs) compared to females, and there was a dramatic reduction in the fatty acids 22:6(n−3) and 20:5(n−3) with increasing maturity stage. Using multivariate statistical techniques, these changes in the fatty acid composition of the sea urchin gonad were linked to habitat related diet differences combined with gender differences. These changes in the fatty acid signatures clearly reflect the dual function of the gonad as both a nutrient store and a reproductive organ.  相似文献   

12.
Although sediment deposition has detrimental effects on macroalgal settlement and recruitment, fucoid algae (mainly Sargassum duplicatum) thrive on rocky reefs always overlaid with fine sediments in sheltered sites of Kagoshima, Japan. The aim of the present study was to assess their ability to settle and recruit onto sediment-covered substrata. A transplant experiment using boulders with Sargassum juveniles attached showed that the 30-day survival rate was as high as 50% even for the juvenile stage (<10 mm) on boulders completely buried with sediment. In addition, an outdoor tank experiment testing the effects of different sediment thicknesses (0–4 mm) on already settled 4-day old S. duplicatum germlings indicated significant reductions in growth by the presence of sediment cover even at 0.5 mm but no significant increase in mortality up to 2 mm. Furthermore, an in situ experiment in which sterilized cobbles were placed at a sediment-covered site to allow sediment to settle over them before the embryo release showed a uniformly high recruitment of Sargassum over the cobbles. This suggests the presence of unknown mechanisms to allow the settlement of propagules on substrata thinly but completely covered by fine sediments.  相似文献   

13.
 A survey of the distribution and maximum depth of a continuous Fucus vesiculosus belt was carried out in the Gulf of Finland in 1991. F. vesiculosus is widely distributed throughout the Gulf of Finland, including the vicinity of Vyborg Bay, Russia in the east. The maximum growth depth of F. vesiculosus in the Gulf of Finland reflects two different patterns according to the exposure to wave action. The most robust and continuous F. vesiculosus belt is observed on exposed shores, where the maximum growth depth is 5 to 6 m, with the optimum at 2 to 3 m. On moderately exposed shores the maximum growth depth is 3 m, with an optimum growth depth of <2 m. The maximum growth depth also varies geographically, with a decreasing trend towards the east. Maximum growth depth of F. vesiculosus correlates with light intensity. The compensation point for F. vesiculosus photosynthesis is about 25 μmol m−2 s−1, and photosynthesis is saturated at a light intensity of 300 μmol m−2 s−1. Vertical irradiance attenuation measurements in situ in summer revealed that for F. vesiculosus photosynthesis the quantity of light is optimal (200 to 300 μmol m−2 s−1) at <3 m depth. At depths >5 m the quantity of light is near or below the photosynthesis compensation point and insufficient for growth. These depth limits of light penetration coincide with measured growth depths of F. vesiculosus in the Gulf of Finland. Received: 7 May 1999 / Accepted: 18 November 1999  相似文献   

14.
Four species of microalgae (Chaetoceros muelleri, Tetraselmis suecica, Tahitian Isochrysis sp. (T-iso) and Dunaliella tertiolecta) with distinctly different fatty acid profiles were grown in continuous culture and fed to prawn larvae (Penaeus japonicus, P. semisulcatus and P. monodon) as monospecific diets. The best two diets (C. muelleri and T. suecica) were also fed as a mixed diet. Experiments were run until the larvae fed the control diet of C. muelleri metamorphosed to Mysis 1. The survival and development (i.e. performance) of the larvae were affected by algal diet, and the diets were ranked in the order of decreasing nutritional value: C. muelleri ≥ T. suecica > T-iso > D. tertiolecta. Larvae fed a mixed diet of C. muelleri and T. suecica (2:3 by dry weight) performed as well or better than those fed C. muelleri, and the performance of both these groups of larvae was better than those fed T. suecica. The lipid and carbohydrate compositions of the algae had little or no effect on the lipid and carbohydrate compositions of the larvae or their performance. However, the larvae that performed best (i.e. those fed C. muelleri) had significantly more lipid and carbohydrate than those that performed worst (i.e. those fed D. tertiolecta). Larvae fed C. muelleri or the mixed-algae diet had higher proportions of the essential fatty acids eicosapentaenoic acid [EPA, 20:5(n-3)] and arachidonic acid [ARA, 20:4(n-6)] than the larvae fed on other diets. Furthermore, the larvae fed T. suecica, which showed intermediate performance between larvae fed C. muelleri and T-iso or D. tertiolecta, also had higher proportions of EPA and ARA. Both C. muelleri and T. suecica contained EPA and ARA, but T-iso and D. tertiolecta did not, except for trace amounts of EPA in T-iso. The fatty acid ARA appears to be much more important in the diet of larval prawns than has so far been considered. The level of the essential fatty acid docosahexaenoic acid [DHA, 22:6(n-3)] in the algal diet and the larvae was not related to the performance of the larvae; only C. muelleri and T-iso contained DHA. However, the nauplii contained large proportions of DHA, suggesting that these were sufficient to meet the larval requirements for DHA during their development to Mysis 1. Mixed-algae diets could improve the performance of larvae by providing a more comprehensive range of fatty acids. Received: 22 April 1998 / Accepted: 3 December 1998  相似文献   

15.
 The relationship between intermoult duration (coloration), sex, size and seasonal variations in fatty acid (FA) profiles was studied in a population of shore crabs, Carcinus maenas, inhabiting the Isefjord, Denmark. For male shore crabs, the total hepatopancreas FA content was high in July and December (12.7 to 16.0 mg g−1 dry weight, dw) but lower in May and September (7.3 to 10.0 mg g−1). This indicates that male shore crabs are in relatively good condition before winter, when the crabs migrate off shore, but in relatively poor condition when they return to shallow waters during spring. The hepatopancreas FA content also decreased over the mating season. After the mating season the hepatopancreas FA content of males had decreased to approximately 60% of that prior to the mating season. Female shore crabs had significantly higher hepatopancreas FA levels than males in May (11.7 mg g−1 dw), September (12.6 mg g−1 dw) and December (17.9 mg g−1 dw) but lower levels in July (9.5 mg g−1 dw). This indicates that the spawning season is the most energy-demanding part of the female reproductive cycle. For all seasons, the hepatopancreas FA content of green shore crabs was significantly higher than that of red shore crabs. For both colour forms, the amount of polyunsaturated fatty acids (PUFAs) was significantly higher than that of saturated fatty acids (SAFAs) and monounsaturated fatty acids (MUFAs), with the relative proportion of PUFAs increasing when the total hepatopancreas FA content decreased. For both genders and colour forms, the most dominating SAFA was palmitic acid (16:0). Palmitoleic acid (16:1ω7), vaccenic acid (18:1ω7) and oleic acid (18:1ω9) were the three MUFAs found in highest concentrations. The most dominating PUFA was eicosapentaenoic acid (EPA, 20:5ω3). Docosahexaenoic acid (DHA, 22:6ω3) and arachidonic acid (AA, 20:4ω6) were also abundant in all samples. The results demonstrated that season, sex, size and intermoult duration all influence the amount of FAs present in the hepatopancreas of shore crabs. Received: 23 September 1999 / Accepted: 29 April 2000  相似文献   

16.
The distribution of n-3 highly unsaturated fatty acids (HUFA) over the major neutral and polar lipid classes was determined for two predominant types of live food used in the larviculture of marine fish and shrimp, i.e. freshly hatched and HUFA-enriched Artemia, and compared with data reported in the literature for wild copepods, representing the natural diet of these larvae. Lipid class composition and their content of n-3 HUFA, particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), were assessed in freshly hatched, HUFA-enriched and subsequently starved Artemia franciscana. The n-3 HUFA enrichment was based on feeding Artemia a lipid emulsion in which either fatty acid ethyl esters (EE, diluted with olive oil) or triacylglycerol (TAG) provided a level of 30% n-3 HUFA. Enrichment of Artemia with either type of the lipid emulsions resulted in an increase of total lipid content from 20.0 to 28.2–28.7% of dry matter mainly due to the accumulation of neutral lipid, primarily TAG (from 82 to 158 mg g−1 dry wt in freshly hatched and 24-h enriched Artemia). Enriched brine shrimp utilized up to 27–30% of their TAG content during 72 h of starvation at 12 °C. The absolute tissue concentrations of polar lipids remained constant at 71 to 79 mg g−1 dry wt throughout the enrichment and subsequent starvation. The level of n-3 HUFA increased drastically during enrichment from 6.3% of total fatty acids (8.2 mg g−1 dry wt) in freshly hatched nauplii to between 20.4 and 21.8% (40.4 to 43.2 mg g−1 dry wt) in 24-h enriched Artemia and was not significantly affected by the source of n-3 HUFA. During starvation, 18:0, 20:4n-6 and 20:5n-3 were retained, whereas 18:4n-3, 22:5n-3 and 22:6n-3 were specifically catabolized. The major polar lipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), of freshly hatched Artemia showed very low levels of DHA (<0.1% of total fatty acids) and carried about 45% of the total EPA present. Enrichment with either of the emulsions resulted in an increase of the neutral lipid fraction which concentrated >64% of the EPA and >91% of the total DHA present. This is in sharp contrast with the high levels of n-3 HUFA, in particular DHA, in the polar lipid fraction reported for wild copepods. The contrasting distribution of DHA in the neutral and polar lipid fractions of enriched brine shrimp compared to the natural diet may influence the efficacy of this essential fatty acid for marine fish larvae in aquaculture systems. Received: 10 June 1997 / Accepted: 8 August 1997  相似文献   

17.
The nutritional value of Artemia sp. as food for marine fish and crustacean larvae has been linked to the level of its polyunsaturated fatty acid (PUFA) content. Experiments in August 1984 were conducted to determine the effects of various artificial diets and algae on fatty acid composition of PUFA-deficient Artemia sp. (Utah GSL strain) and their resulting value as food for postlarvae of the prawn Penaeus monodon (Fabricius). Nauplii of the brine shrimp were grown on extracts of corn, copra, soybean and rice bran containing precursors (C18) to long-chain PUFA and also on algal species containing different levels of long-chain PUFA (C20). The nauplii were then used as food for P. monodon postlarvae. The results revealed that absence of C20 polyunsaturates from the feeds and their presence in the algae were reflected in the polyunsaturated fatty acid content of the tissues of Artemia sp. When fed with brine shrimp fed on algae, P. monodon displayed better postlarval survival and significantly higher growth; related to the content of polyunsaturated fatty acids in Artemia sp. A practical feeding approach in prawn hatcheries would be to grow Artemia sp. on a cheap diet such as rice bran, and then to enhance its nutritional value with a diet high in PUFA prior to harvesting, in order to improve hatchery production.  相似文献   

18.
M. Sato  K. Wada 《Marine Biology》2000,137(4):705-714
 For three spider crabs (Tiarinia cornigera, Micippaplatipes and Pugettia quadridens quadridens), patterns of algal utilization for decorating were compared with the dynamics of algae on an intertidal rocky shore reef where the crabs co-occurred. T. cornigera and P. quadridens quadridens were most abundant from autumn to spring when the dominant algae (Boodleacoacta, Sargassum hemiphyllum, S. thunbergii and Corallina pilulifera) occurred in high coverage, while M. platipes was most abundant from spring to autumn. Monthly change of algae used for decorating was not correlated with algae growing in the crab habitat for T. cornigera, but for M. platipes, it was positively correlated for two algal species, and for P. quadridens quadridens, negatively correlated for one algal species. Each species of the spider crabs used some algal species preferentially for decoration. Decorating preference experiments conducted in the laboratory showed that M. platipes and P. quadridens quadridens exhibited similar preference to their algal utilization in the field, whereas for T. cornigera, algal preference in the experiment differed from utilization in the field. Comparisons between materials used for decoration and gut contents revealed that T. cornigera and M. platipes used algal species differently for decorating and feeding, while P. quadridens quadridens used the same algal species for both decorating and feeding. Different tactics for camouflage are discussed in terms of algal utilizations by the three majid species. Received: 25 September 1999 / Accepted: 22 June 2000  相似文献   

19.
Dover sole (Solea solea, Linneaus 1758) were raised from first feeding on brine shrimp (Artemia sp.) with different contents and compositions of the essential fatty acids (EFA) arachidonic acid (ARA, 20:4n − 6); eicosapentaenoic acid (EPA, 20:5n − 3), and docosahexaenoic acid (DHA, 22:6− 3), and their metabolic rate and tolerance to hypoxia measured prior to and following metamorphosis and settlement. Four dietary Artemia preparations were compared: (1) un-enriched; (2) enriched with a commercial EFA mixture (Easy DHA SELCO Emulsion); (3) enriched with a marine fish oil combination (VEVODAR and Incromega DHA) to provide a high ratio of ARA to DHA, and (4) enriched with these fish oils to provide a low ratio of ARA to DHA. Sole fed un-enriched Artemia were significantly less tolerant to hypoxia than the other dietary groups. Larvae from this group had significantly higher routine metabolic rate (RMR) in normoxia, and significantly higher O2 partial pressure (PO2) thresholds in progressive hypoxia for their regulation of RMR (P crit) and for the onset of agitation, respiratory distress and loss of equilibrium. Metamorphosis was associated with an overall decline in RMR and increase in P crit, but juveniles fed on un-enriched Artemia still exhibited higher P crit and agitation thresholds than the other groups. Sole fed un-enriched Artemia had significantly lower contents of EFA in their tissues, both before and after settlement. Thus, enriching live feeds with EFA has significant effects on the respiratory physiology of sole early life stages and improves their in vivo tolerance to hypoxia. We found no evidence, however, for any effect of the ratio of ARA to DHA.  相似文献   

20.
In summer 1998, shallow water corals at Sesoko Island, Japan (26°38′N, 127°52′E) were damaged by bleaching. In August 2003, partially damaged colonies of the massive Porites lutea and the branching P. cylindrica were collected at depths of 1.0–2.5 m. The species composition of epilithic algal communities on dead skeletal surfaces of the colonies (‘red turfs’, ‘green turfs’, ‘red crusts’) and the endolithic algae (living in coral skeletons) growing close to and away from living coral polyps was determined. Carbon and nitrogen stable isotope values of organic matter (δ13C and δ15N) from all six of these biological entities were determined. There were no significant differences in the isotope composition of coral tissues of the two corals, with P. lutea having δ13C of −15.3 to −9.6‰ and δ15N of 4.7–6.1‰ and P. cylindrica having similar values. Polyps in both species living close to an interface with epilithic algae had similar isotope values to polyps distant from such an interface. Despite differences in the relative abundance of the algal species in red turfs and crusts, their δ13C and δ15N values were not significantly different from each other (−18.2 to −13.9, −20.6 to −16.2, 1.1–4.3, and 3.3 to 4.9‰, respectively). The green algal turf had significantly higher δ13C values (−14.9 to −9.3‰) than that of red turfs and crusts but similar δ15N (1.2–4.1‰) to the red algae. The data do not suggest that adjoining associations of epilithic algae and coral polyps exchange carbon- and nitrogen-containing metabolites to a significant extent. The endolithic algae in the coral skeletons had δ13C values of −14.8 to −12.3‰ and δ15N of 4.0–5.4‰. Thus they did not differ significantly from the coral polyps in their carbon and nitrogen isotope values. The similarity in carbon isotope values between the coral polyps and endolithic algae may be attributed to a common source of CO2 for zooxanthellae and endolithic algae, namely, from respiration by the coral host. While it is difficult to fully interpret similarity in the nitrogen isotope composition of coral tissue and of green endolithic algae and the difference in δ15N between green epilithic and endolithic algae, the data are consistent with nitrogen-containing metabolites from the scleractinian coral serving as a significant source of nitrogen for the endolithic algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号