首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 796 毫秒
1.
树脂吸附-Fenton试剂氧化法处理水杨醛生产废水   总被引:1,自引:0,他引:1  
采用树脂吸附-Fenton试剂氧化法处理水杨醛生产废水。XF-01树脂和XF-02树脂静态吸附水杨醛生产废水时,COD去除率均在85%以上,挥发酚去除率均高于90%。XF-02树脂对水杨醛生产废水的处理效果更佳。动态吸附随废水流量增大,吸附出水的COD和挥发酚质量浓度均增加。适宜的废水流量为15BV,树脂的最佳脱附温度为80℃。在连续4批的吸附-脱附实验中,吸附出水的平均COD约为1200mg/L,平均挥发酚质量浓度小于10mg/L。在Fenton试剂氧化中,铁屑和铁粉的催化效果差别很小,都好于FeSO4·7H2O。以铁屑为催化剂、H2O2溶液加入量为1%时,氧化出水的COD小于150mg/L,挥发酚质量浓度小于0.5mg/L。  相似文献   

2.
离子交换树脂处理三乙胺废水   总被引:1,自引:0,他引:1       下载免费PDF全文
采用离子交换树脂对废水中三乙胺进行吸附。探讨了静态及动态吸附三乙胺的影响因素,考察了树脂的脱附条件及其吸附稳定性。实验结果表明:RX01型树脂对三乙胺的吸附性能优于HD-81型和D155型树脂;在三乙胺初始质量浓度为1 500 mg/L、初始pH为11.5、吸附时间为2 h、吸附温度为298 K的静态吸附条件下,三乙胺去除率为96.3%,饱和吸附量为145 mg/g,等浓度条件下阳离子影响的大小顺序为Ca~(2+)Mg~(2+)K~(+)Na~(+);当三乙胺初始质量浓度为1 500 mg/L、废水流量为60 BV/h、动态吸附柱高径比为5.37时,穿透体积为70 BV,出水三乙胺质量浓度小于3 mg/L,三乙胺去除率高达99.5%;以2 mol/L的HCl溶液为脱附剂,脱附剂流量为1 BV/h、出水体积为4 BV时,三乙胺的脱附率达94.8%;在最优动态吸附-脱附条件下重复使用10次,树脂性能稳定。  相似文献   

3.
树脂吸附法处理磺胺中间体生产废水的研究   总被引:12,自引:0,他引:12  
研究了树脂吸附法处理磺胺中间体生产废水的工艺过程,研究结果表明,NDA-900吸附树脂对该废水具有良好的吸附-脱附处理效果,在原废水中对氨基苯磺酸质量浓度为5000-6000mg/L,氨基值近5000mg/L,COD高达10000mg/L以上,经树脂吸附处理后(处理量为每批次12BV),对氨基苯磺酸的去除率大于96%,氨基值去除率大于65%,COD去除率大于55%,树脂脱附液经酸化结晶,过滤处理,可回收对氨基苯磺酸。  相似文献   

4.
树脂吸附法处理分散蓝NKF脱磺母液   总被引:6,自引:0,他引:6  
对NDA-9大孔吸附树脂吸附法处理分散蓝NKF生产过程中产生的脱磺母液(废水)进行了研究。在试验条件下,废水经吸附处理后COD由7500mg/L以上降至700mg/L以下,去除率达90%以上,树脂的脱附率大于98%。吸附出水经Fenton试剂氧化处理后,出水COD降至100mg/L以下,去除率达98%以上。  相似文献   

5.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

6.
树脂吸附法处理对氨基苯酚废水   总被引:3,自引:2,他引:1  
采用自制的NDA-99特种复合功能树脂处理对氨基苯酚(PAP)生产废水,考察了各种因素对吸附和脱附效果的影响。小试实验结果得出的工艺条件为:吸附流量2.0BV/h,吸附温度15℃,单柱吸附量10BV;脱附剂为2BV盐酸(质量分数1.5%)+2BV水。中试试验结果表明,在上述工艺条件下,NDA-99树脂处理PAP废水的吸附性能和脱附性能稳定,平均COD去除率约为93%,平均PAP脱附率达98%。  相似文献   

7.
树脂吸附—Fenton氧化法处理精对苯二甲酸废水   总被引:4,自引:1,他引:4  
采用树脂吸附-Fenton加氧化法处理精对苯二甲酸(PTA)废水,考察了树脂吸附及Fenton氧化的最佳工艺条件。实验结果表明,采用NDA-88吸附树脂,在室温、吸附流速2BV/h条件下,每批次处理量为28BV,COD去除率为80%左右;采用Fenton试剂进一步氧化处理,在废水pH为3、质量分数30%的8202加入量为1.2%(体积分数)、H2O2与Fe^2+摩尔比为3:1、反应温度为40℃、反应时间为4h条件下,出水COD为72mg/L,COD去除率为87%,可达到国家一级排放标准。  相似文献   

8.
采用吸附-Fenton氧化-絮凝法处理对硝基苯胺生产废水(简称废水),研究了吸附剂、脱附温度、絮凝剂等因素对处理效果的影响.经实验确定的最佳工艺条件为:DM301大孔树脂加入量5.0 g/L,吸附时间20 h,Fenton氧化pH 3.0,H_20_2加入量0.3 moL/L,m(Fe):m(H_20_2)=6,絮凝阴离子型聚丙烯酰胺加入量20 mg/L.在此条件下对COD为2 780 mg/L、色度为185倍和pH为12.2的废水进行处理,出水的COD、色度和pH分别为169 mg/L、10倍和6.5,COD去除率和色度去除率分别达到93.9%和94.5%.DM301树脂在10~25次重复使用后对硝基苯胺的平均总去除率为47.7%,对硝基苯胺的平均回收率为37.9%.  相似文献   

9.
研究了NDA-66新型超高交联树脂对邻苯二甲酸的吸附及脱附性能。实验结果表明:静态吸附过程中,在初始邻苯二甲酸质量浓度1 000 mg/L、溶液pH=2.0、吸附时间600 min的条件下,吸附量可达190 mg/g;动态吸附过程中,处理11吸附床层体积倍数(BV)的邻苯二甲酸溶液,当溶液流量为1.5 BV/h时,吸附率可达100%;动态脱附过程中,在w(NaOH)= 6%、脱附温度328 K的最佳脱附条件下,脱附率可达99%以上。  相似文献   

10.
苯基周位酸生产废水处理试验研究   总被引:7,自引:0,他引:7  
采用CHA-111大孔吸附树脂对苯基周位酸生产过程排放的汽提苯胺盐析废水和苯基周位酸酸析母液进行处理试验,效果良好。汽提苯胺盐析废水苯胺质量浓度>1600mg/L,经树脂吸附处理后苯胺质量浓度<2mg/L,苯胺去除率>99.9%,COD去除率>97%,树脂工作吸附量达120g/L,脱附率>98%;苯基周位酸酸析母液经树脂吸附、混凝沉淀处理后,苯基周位酸质量浓度<190mg/L,苯基周位酸去除率为94.8%,COD去除率为94.3%,氨基值去除率为80%,脱附率>99%。  相似文献   

11.
陈奇奇  徐明德 《化工环保》2014,34(4):348-351
采用二次缩合反应预处理高浓度酚醛树脂生产废水。一次反应的最佳工艺条件为:甲醛加入量0.010 0 mL/mL,Ba(OH)2加入量0.005 g/mL,反应时间3 h,反应温度85 ℃。最佳工艺条件下的一次反应COD去除率为 52.9%。二次反应中,当反应温度为80 ℃、反应时间为3 h、尿素加入量为3 g/L时,二次反应COD去除率最高,为31.5%。COD=85 000 mg/L、ρ(挥发酚)= 12 000 mg/L、ρ(甲醛)=6 740 mg/L的废水经两次缩合反应处理后,出水中COD=27 400 mg/L,COD的总去除率为67.8%;ρ(挥发酚)=2 400 mg/L,挥发酚的总去除率达80.0%;ρ(甲醛)= 980 mg/L,甲醛的总去除率达84.9%。处理1 t废水还可回收酚醛树脂6.75 kg。  相似文献   

12.
罗倩仪  谢文玉  钟理 《化工环保》2014,34(6):535-538
采用两级移动床生物膜反应器(MBBR)预处理高挥发酚含量的石化厂汽提净化水,考察了HRT和DO对废水中挥发酚和COD去除效果的影响。实验结果表明:在两级MBBR总HRT为10 h、MBBR中部废水DO 为1~3 mg/L的条件下, 装置连续运行处理ρ(挥发酚)=110~201 mg/L、COD=644~1 827 mg/L、BOD5/COD=0.15~0.69的废水,两级MBBR处理后出水平均ρ(挥发酚)为17.6 mg/L,挥发酚去除率达87.9%;平均COD为745 mg/L,COD去除率为32.7%;出水BOD5/COD平均为0.68,表明经过两级MBBR处理后,废水的可生化性有所提高,有利于废水的后续生化处理。  相似文献   

13.
王佳  李安峰  潘涛  骆坚平 《化工环保》2014,34(4):352-355
利用两相厌氧工艺处理高浓度丙烯酸生产废水。实验结果表明:在较高进水COD和容积负荷的条件下,系统具有良好、稳定的处理效果;在负荷提高及稳定运行阶段,将生活污水与丙烯酸生产废水的体积比调整为5∶1,容积负荷最大提高至12.3 kg/(m3·d),两相厌氧反应器可长期稳定运行,总COD去除率基本维持在90%以上,出水COD小于323 mg/L;当进水甲醛质量浓度为800~1 733 mg/L时,总甲醛去除率基本稳定在95.6%~99.3%;在负荷提高及稳定运行阶段,水解酸化相反应器和产甲烷相反应器的出水pH分别为6.2~7.6和7.6~8.1,出水总碱度分别为1 220~1 820 mg/L和1 800~2 620 mg/L。  相似文献   

14.
孟冠华  邱菲  方玲  司晨浩 《化工环保》2017,37(3):315-319
采用连续通入废水和臭氧的方式,利用臭氧氧化法深度处理焦化废水生化出水(COD为151~183 mg/L、pH约为8),并通过添加羟基自由基抑制剂叔丁醇探究了臭氧氧化的机理。在不调节废水pH、臭氧投加量12.15mg/L、废水流量2 mL/min的最佳条件下,COD去除率达54.5%,出水COD达到GB 16171—2012《炼焦化学工业污染物排放标准》。稳定运行时,降解1 kg COD需投加臭氧741.1 mg。臭氧氧化过程中,臭氧自身氧化和羟基自由基氧化同时存在,且以羟基自由基氧化为主。反应过程符合准一级动力学模型,反应速率常数为0.01 min~(-1)。  相似文献   

15.
采用Fenton氧化法处理石化含油废水生化出水,通过正交实验和单因素实验优化了反应工艺条件。正交实验得到各因素对COD去除率的影响大小顺序为:溶液初始pHH_2O_2投加量n(H_2O_2)∶n(Fe~(2+))反应温度。实验最佳工艺条件为:初始溶液pH 4.0,H_2O_2投加量3.00 mL/L,n(H_2O_2)∶n(Fe~(2+))=10,反应温度35℃,反应时间60 min。在此最佳工艺条件下COD可降至60.33 mg/L,COD去除率达61.33%。在最佳工艺条件下,分别采用超声(US)-Fenton氧化和紫外光(UV)-Fenton氧化技术处理含油废水生化出水,COD去除率分别达76.77%和80.23%。但单一Fenton氧化、US-Fenton氧化和UV-Fenton氧化工艺对NH_3-N的去除效果均并不明显。  相似文献   

16.
采用臭氧氧化—包埋菌流化床生物处理组合工艺对煤气化废水进行深度处理。实验结果表明:当臭氧的质量浓度20 mg/L、臭氧进气流量1.5 L/min、臭氧通气时间30 min、包埋菌流化床水力停留时间24 h时,臭氧氧化工序的COD去除率达到30.0%~40.0%,总酚去除率达到100.0%;包埋菌流化床工序的COD去除率达到60.0%以上,氨氮的去除率大于95.0%;经组合工艺处理后,出水COD<60 mg/L,ρ(氨氮)<1.0 mg/L,ρ(总酚)未检出,色度小于50倍,达到GB8978—1996《污水综合排放标准》中的一级排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号