首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为探讨垃圾渗滤液处理过程中CH_4的释放规律,该研究以某垃圾焚烧发电厂渗滤液处理站为对象,通过现场采样监测和实验室分析,研究了该站渗滤液处理各单元CH_4的液面释放通量、溶解态浓度、年释放总量、释放系数以及释放影响因素。结果发现,该站CH_4的最大释放源是厌氧池,占比约96.8%;好氧池中CH_4气体的释放通量和溶解氧的浓度呈显著相关;调节池CH_4气体释放通量和水温呈显著相关;但溶解氧、水温、pH值、亚硝态氮和硝态氮浓度不是影响该站CH_4释放总量的主要因素;该站CH_4的年人均释放系数是872.604~1 387.858 g/a,CH_4的污水流量释放系数是9.467~15.057 g/L,二者均远远大于IPCC报告中关于生活污水的对应值。该研究对完善中国温室气体排放的基础数据、促进垃圾渗滤液处理的节能减排和清洁发展机制(CDM)项目开发,都具有重要的工程实践意义和社会意义。  相似文献   

2.
大气中的痕量气体CH_4(甲烷)是重要的温室气体之一。由于人类活动的影响,大气中CH_4的浓度比工业化革命以前增加了许多。据观测,目前全球范围内CH_4的深度和年增长率分别是l.74ppm和0.6~1.0%。模式计算显示,CH_4对全球气候变暖的贡献为15%。由于CH_4的增温潜能是CO_2的45倍,若按目前  相似文献   

3.
已观察到米尔克里弗含水层地下水中离子组成有一些明显趋向。来自次露头地区的地下水,其Na~+、SO_4~(2-)、Ca~(2+)和Mg~(2+)的浓度比紧邻的下坡的地下水高;在次露头地区之外,地下水的Na~+、Cl~-、HCO_3~-和CO_3~(2-)以及CH_4的浓度有规律地随着其滞留时间的增加而增加,pH值降低,Mg~(2+)和Ca~(2+)浓度往往偏低(小于0.1mmol/L)。地质变化对产生这些化学模式起了重要作用。第一个主要地质变化是约在5×10~5年前补给区的上覆隔水层被侵蚀,使Na~+和Cl~-浓度低的大气降水能进入含水层并置换了原先存在的水。第二个主要地质变化是在约30000~40000年前米尔克里弗地区出现冰碛物沉积。通过冰碛物向含水层补给的水,其发育特征是Na~+、SO_4~(2-)、Ca~(2+)和Mg~(2+)的浓度高。在次露头地区的下坡,Na~+和Cl~-的变化趋势受从下伏页岩隔水层的扩散所控制。分别对地下水、硫酸盐还原细菌和地下水的气体样品,以及硫化物和H_2S气体样品的分析结果表明,SO_4~(2-)还原不是一个主要过程。地球化学模拟表明,CO_2气体是随着在含水层中滞留时间的增加而不断加入地下水的。CO_2、CH_4和溶解的无机碳的增加可以归因于甲烷发酵。地球化学模拟表明,阳离子交换在该地下水的化学演化中只起次要的作用。  相似文献   

4.
卫河新乡市区段春季溶解CH4与N2O浓度特征   总被引:2,自引:2,他引:0  
侯翠翠  张芳  李英臣  王奇博  刘赛 《环境科学》2016,37(5):1891-1899
对卫河新乡市区段春季CH_4与N_2O浓度进行调查分析,初步探讨了城市河流中典型温室气体的溶存量空间变化及其影响因素.结果表明,受到水中污染物质浓度及人类活动影响,春季卫河表层水中CH_4与N_2O浓度处于超饱和状态,饱和度分别为147.59~2 667.85和4.06~188.25.影响市区内N_2O浓度的主要环境因素为NH~+_4-N(P0.01),而新区污水处理厂排水输入显著提高了N_2O的溶存量,说明污染物类型影响温室气体的产生和积累,NH~+_4-N的硝化过程是城市河流N_2O产生的主要来源.逐步回归分析表明CH_4浓度是NH~+_4-N浓度与水温的相关函数,其中CH_4浓度与NH~+_4-N极显著相关(R2=0.70,P0.01),说明春季卫河中NH~+_4-N浓度是影响卫河春季CH_4溶存的关键因素.此外研究结果显示在NO~-_3-N浓度较低并且NH~+_4-N浓度高时水中CH_4与N_2O浓度具有显著正相关关系,表明有效态氮浓度差异影响CH_4与N_2O产生过程的耦合机制.  相似文献   

5.
小型池塘作为内陆水体的一部分,是被忽视的温室气体重要排放源.本研究主要利用通量-梯度方法测量长江三角洲地区的一处小型池塘水-气界面温室气体(CO_2和CH_4)交换通量.结果表明:1零梯度测试结果显示本套通量-梯度系统测量H_2O、CO_2和CH_4通量的精度分别为7.525 W·m-2、0.022 mg·(m2·s)-1、0.054μg·(m2·s)-1,并且在正常实验观测期间3种气体(H_2O、CO_2和CH_4)的通量值分别有84%、80%和94%的结果高于零梯度测试精度,以上结果可以保证本套通量-梯度系统具有足够的精度测量池塘水-气界面温室气体交换通量;2通量-梯度计算结果表明此小型池塘在夏季为CO_2和CH_4的排放源,其排放通量平均值分别为0.038 mg·(m2·s)-1和0.889μg·(m2·s)-1,其中CH_4排放通量远高于内陆湖泊甲烷排放通量的中值,说明小型池塘的温室气体排放量是估算内陆水体温室气体排放量特别是CH_4排放量中不可忽视的重要量值,本研究结果可为准确估算区域温室气体排放量提供科学参考.  相似文献   

6.
城市交通是CH_4等温室气体的重要排放源,而CH_4排放的观测研究是定量分析城市碳排放的基础.本项研究考虑城市交通的周变化和日变化特点,于2014年10月17日、18日、20日、23日每日5个时段在南京市主城区三条交通主干道上和2015年9月11日的早晚时段在南京长江隧道内,观测大气CH_4和CO_2浓度,分析交通CH_4排放特征及其影响因素.结果表明:1南京城区交通主干道的CH_4平均浓度均大于背景大气CH_4浓度.受交通车流量的影响,ΔCH_4浓度的空间差异显著.ΔCH_4浓度的日变化呈现倒"W"型,在交通早晚高峰时出现峰值.2由于隧道内"活塞风"的作用,长江隧道内的CH_4浓度从入口到出口逐渐增大,出入口浓度差在0.21×10-6~0.38×10-6(摩尔分数,下同)之间.3大气CH_4浓度与CO_2浓度之间线性相关.交通主干道上的ΔCH_4∶ΔCO_2值平均为0.009 1;隧道内的ΔCH_4∶ΔCO_2值仅为0.000 47~0.001 4.4影响南京城区道路大气ΔCH_4浓度和ΔCH_4∶ΔCO_2值的主要因素分别是车流量和天然气车占车流量的比例.  相似文献   

7.
煤矿抽采出的低浓度瓦斯直接排空不仅浪费清洁能源而且加剧温室效应。离子液体(IL)是近年来用于气体分离的热点研究对象。综述了利用IL分离气体,特别在溶解CH_4气体方面的研究进展,归纳了具有高效溶解CH4能力的IL结构特征,以及阴阳离子对IL溶解CH_4的影响规律。分析结果表明CH_4在大部分ILs中的溶解度较小;与咪唑类ILs相比,阴离子为[FAP]~-、[doc]~-、[Tf_2N]~-、[TMPP]~-,阳离子取代链为长烷烃的季膦类和季胺类ILs具有更强的溶解CH_4的能力。特别是[P4444][TMPP]和[P(14)666][TMPP]对CH_4表现出优越的溶解性,可考虑用这2种ILs存储CH_4。至于两者能否用于浓缩CH_4,还需实验测试[P4444][TMPP]和[P(14)666][TMPP]溶解CO_2和N_2的情况,以及对溶解过程的影响。  相似文献   

8.
于2015年10月19日~11月02日对东海表层海水和PN断面不同深度海水中4种VHCs浓度进行了测定,并同时测定了调查海域大气中C_2Cl_4和3种CFCs浓度.海水中CH_3I、CH_3Br、CHBr_3和C_2Cl_4浓度水平分布总体呈现近岸高于外海的趋势;PN断面4种VHCs浓度高值出现在表面混合层.海水中4种VHCs分布受到长江冲淡水、黑潮水、生物生产释放以及人为污染等多种因素的影响.相关性分析表明CH3I与Chl-a之间存在显著相关性,推断浮游植物生物量可能影响碘甲烷浓度分布.CH_3I与CH_3Br和CHBr_3之间也有一定的相关性,推测3种VHCs存在相似的来源或去除机制.东海大气中3种CFCs大气浓度值低于全球平均值,表明我国CFCs的排放逐步降低.后向轨迹分析表明来自近岸陆源污染物的扩散和输送是东海大气中C_2Cl_4、CFC-11、CFC-113和CFC-114的重要来源.海水中4种VHCs海-气通量的估算结果表明秋季东海是大气中CH_3I、CH_3Br、CHBr_3和C_2Cl_4的源.  相似文献   

9.
文章利用全球首颗专用温室气体观测卫星"呼吸号"(GOSAT)上的被动红外探测器(TANSO)官方反演的CH_4浓度L4B数据产品研究2009年6月-2012年5月期间中国区域近地面975 hPa和高空400、250 hPa高度CH_4浓度数据通过与中国地区全球大气本底站(瓦里关站)的数据进行比对验证,剔除L4B中的不合理数据,分析其分布的时空变化特征,同时分析了中国区域对流层和瓦里关站CH_4 2009-2012年间的变化情况以及增长率并将瓦里关站与TCCON全球CH_4地面观测站点数据进行分析比较。结果表明:中国区域CH_4分布在垂直方向上随高度增加而逐渐下降,CH_4主要分布在华北地区,且春夏季节较为强烈,中高层CH_4呈增长趋势,而瓦里关站则有下降的趋势。  相似文献   

10.
文章提出了一种基于激光拉曼光谱仪的生物燃气气体组分含量的快速分析方法,实现了生物燃气中C_1~C_3、H_2、O_2、N_2、CO、CO_2共11种气体成分的同时测定。通过实验测定、计算CH_4主峰处其他气体相对于CH_4的折算系数,解决了拉曼光谱中存在的重叠峰使CH4测量不准确的问题。同时通过实验和分析确定了合理的积分时间和气体压力。实验表明,所有组分都能被测量出来,并且测量的绝对误差小于1%,基本满足生物燃气组分含量的现场分析的精度和稳定性要求。  相似文献   

11.
为研究沙颍河表层水体CH_4溶存浓度、饱和度、释放特征,该研究于7-9月利用顶空模型法对沙颍河主要站点进行观测分析,并探讨了环境因子对水体CH_4的影响。结果表明:丰水期沙颍河各个采样点CH_4浓度在0.001 2~3.120 4μmol/L之间,与世界河流相比处于较高的浓度水平。贾鲁河上游水体CH_4浓度最高,沙河-颍河交汇处浓度最低。水气界面CH_4的释放强度为(2.295 4±2.073 9)μmol/(m~2·h)。昼夜分析显示,沙颍河丰水期CH_4昼夜均处于过饱和状态,是大气的源。贾鲁河上游CH_4昼间释放量占总排放量的一半,沙颍河干流昼间排放量占61.06%,显著大于夜间排放量。丰水期水温偏高、DO偏低以及高浓度的NH_3-N是造成沙颍河CH_4浓度偏高的主要原因。  相似文献   

12.
连续测量大气·OH的化学电离飞行时间质谱仪的研制   总被引:1,自引:0,他引:1  
搭建了一套化学电离飞行时间质谱仪用于连续测量大气·OH.该仪器采用了基于63Ni放射源的双管正交式结构大气压化学电离源电离大气中的·OH,最大程度地避免了试剂气体电离及滴定、转化反应间的相互干扰.63Ni放射源首先电离HNO3试剂气体得到试剂离子NO-3,·OH在反应管中与SO2反应最终转化为H2SO4,NO-3与H2SO4发生化学电离反应生成HSO-4离子,进入到质谱仪中进行检测,通过测量NO-3与HSO-4离子的强度,利用化学电离反应方程可直接计算出大气中OH的浓度.所研制仪器用于实验室内·OH的在线检测,在5 s内测得·OH的浓度为1.6×106个·cm-3,实验结果显示该仪器可用于原位连续测量大气中的超痕量自由基.  相似文献   

13.
2006 年南京冬季浓雾雾水的化学组分   总被引:5,自引:1,他引:4       下载免费PDF全文
利用2006 年12 月24~27 日南京外场观测试验资料和采集到的雾水样品化学分析资料,从雾水的化学组成及同月采集的雨水的比较、雾水离子间的相关性、雾水离子浓度与污染气体的关系等几方面,分析了南京雾水的化学特征.结果表明,南京雾水pH 值介于4.24~7.27,多呈酸性;雾水离子浓度随时间有较大变化,这与雾的宏观和微物理结构有关;雾水中离子浓度与同时期(2006 年12 月上旬)雨水中的离子浓度以及污染气体的浓度变化趋势有一致性.如,雾水SO42-和NO3-的浓度在25 日14:30~19:55 有1 个峰值,而污染气体的峰值则相对提前,大约在13:00~14:00,随后气体和离子的浓度都逐渐降低.  相似文献   

14.
吴建国  周巧富 《环境科学》2016,37(8):2914-2923
以静态箱采集气体和气相色谱分析气体浓度方法,测定分析了青海南部高原积雪期和生长季高寒草甸土壤CO_2、CH_4和N_2O通量.结果表明在积雪集中期的3月3日和4日,积雪深度为9~10 cm时,土壤CO_2通量为1.33 g·(m~2·h)-1、N_2O通量为0.21 mg·(m~2·h)-1、CH_4通量为-0.19 mg·(m~2·h)-1;在积雪末期的4月30日,积雪深度在8~9 cm时,土壤CO_2通量为4.70 g·(m~2·h)~(-1)、N_2O通量为0.24 mg·(m~2·h)-1、CH_4通量为-1.23 mg·(m~2·h)-1;积雪深度小于4 cm时,土壤CO_2和N_2O通量较低或为负值,土壤CH_4通量为负值且绝对值较小.土壤CO_2和N_2O通量与积雪深度呈正相关、土壤CH_4通量与积雪深度呈负相关(P0.05),土壤CO_2与CH_4通量及CH_4与N_2O通量间呈负相关、土壤CO_2与N_2O通量间呈正相关.土壤CO_2和N_2O通量在生长季较高、在积雪末期其次、在积雪集中期较低;土壤CH_4通量为负值,其绝对值在生长季和积雪末期较大.结果说明积雪改变将影响青藏高原高寒草甸土壤温室气体通量.  相似文献   

15.
西双版纳城、郊雾水化学组成分析   总被引:3,自引:0,他引:3  
利用 1997年 11月西双版纳城、郊雾的外场试验观测资料 ,从该地区雾水化学组成与其他地区雾水化学组成的比较、雾水化学组成与环境的关系、雾水化学组成的来源、雾水化学成分的浓度与雾的微物理结构的关系等几个方面分析了该地区雾的化学特征 .结果表明 ,西双版纳城郊雾水明显呈碱性 ,F-浓度比我国其他地区高很多 ;由于生态环境的不同 ,西双版纳城郊雾的化学成分浓度有很大差异 ;与历史资料比较 ,西双版纳城区雾水总离子浓度明显增加 ;雾水的化学组成与当地的气溶胶、土壤的化学组成密切相关 ;雾水总离子浓度与雾滴粒径有关 .  相似文献   

16.
江苏省温室气体排放研究   总被引:3,自引:0,他引:3  
根据IPCC Guidelines(1995)提供的方法,对1990年江苏省温室气体排放清单统计计算,分析该地区能源、工业及农业CO_2、CH_4等温室气体排放量的状况.江苏省年人均排放CO_2为1970kg、CH_4为22.65kg、N_2O为0.11kg,与全国平均水平接近、为全球均值一半.能源消耗是江苏省各项活动中CO_2的排放主要因素,占总排放量的91.6%;CH_4的排放主要来自水稻田,占总排放量的44.1%.  相似文献   

17.
超临界水褐煤气化可以利用褐煤高含水率的特点,实现对褐煤的高效气化。本文拟用气相色谱法对该过程产生的气体产物进行监测分析,得到各种气体的产量和含量,讨论气体产物是否会对环境产生污染。结果表明,超临界水褐煤气化的主要气体产物是H_2、CH_4、CO、CO_2四种,该技术能够实现褐煤的高效气化。H_2、CH_4、CO都是能源气体,其燃烧产物清洁,CO_2是很好的工业气体用品,超临界水褐煤气化产生的气体不会对环境产生污染。  相似文献   

18.
快速城市化区河流温室气体排放的时空特征及驱动因素   总被引:4,自引:3,他引:1  
河流是大气温室气体重要的排放源,近十多年来全球城市化导致河流生态系统各要素发生改变,对河流水体温室气体排放产生影响.为研究快速城市化区不同土地利用方式下河流温室气体排放的时空特征及其影响因素,采用薄边界层模型法,于2014年9月(秋季)和12月(冬季)及2015年3月(春季)和6月(夏季)的晴天对重庆市区内梁滩河干、支流水体pCO_2、CH_4、N_2O溶存浓度进行监测.结果表明,梁滩河干、支流水体pCO_2范围为(23. 38±34. 89)~(1395. 33±55. 45) Pa、CH_4溶存浓度范围(65. 09±28. 09)~(6 021. 36±94. 36) nmol·L~(-1)、N_2O溶存浓度范围为(29. 47±5. 16)~(510. 28±18. 34)nmol·L~(-1); CO_2、CH_4和N_2O排放通量分别为-6. 1~786. 9、0. 31~27. 62和0. 06~1. 08 mmol·(m~2·d)~(-1);流域水体温室气体浓度空间格局与快速城市化带来的污染负荷空间梯度吻合,干流温室气体浓度与通量从上游向下游均呈先增加后降低,在城市化速度最快的中游出现峰值,其中城市河段CO_2和CH_4浓度约为非城市河段的2倍,同时支流水体自上游农业区向下游城市区呈显著增加;由于受到降雨、温度、外源输入的综合影响,河流CO_2排放通量呈秋季冬季夏季春季的季节模式,CH_4排放通量春季最高夏季最低,N_2O排放通量季节差异不显著.流域水体碳、氮含量均较高,水体CO_2的产生和排放不受生源要素限制,但受水温、pH、DO、叶绿素a等生物代谢因子影响; CH_4的产生和排放受水体碳、氮、磷含量和外源污水输入的共同驱动; N_2O的产生和排放主要受高N_2O浓度的城市污水排放影响.本研究认为流域快速城市化加快了河流水体温室气体排放,形成排放热源,因此城市河流温室气体排放对全球河流排放通量的贡献可能被忽视,在未来研究中应受到更多关注.  相似文献   

19.
本研究采用便携式温室气体分析仪连接通量箱在线监测杭州西溪湿地CH_4、CO_2通量日变化及季节变化,同时也对包括有机碳含量、湿度、孔隙度、比重、p H、Eh在内的潜在影响因子进行了研究。结果表明,通常情况下,CH_4、CO_2通量的变化分别为-0.001 9~0.035 3mg/(m~2·h)和-109.76~442.55mg/(m~2·h);CH_4、CO_2通量的变化存在明显正相关关系。CH_4通量的季节变化表现为夏季秋季春季冬季;CO_2通量的季节变化表现为夏季春季冬季秋季。土壤湿度是影响CH_4通量变化的重要因子,通常湿度越大,CH_4通量越大;在生长季维管植物有助于CH_4的氧化;西溪湿地土质差异也使CH_4、CO_2通量排放有所差异,具体表现在土壤有机碳含量相差较大,而土壤中有机碳的含量与CH_4产生潜力呈显著正相关。  相似文献   

20.
本文根据IPCC Guidelines(1995)提供的方法,对1990年江浙沪地区煤炭开采和消耗过程中温室气体排放进行了较为详细的统计计算,并作一定的评价分析。煤炭消耗过程中温室气体的排放为:CO_2:203248.4Gg;CH_4为5.197Gg;NO_2为1.785Gg。煤炭开采过程中CH_4的排放量为24.1Gg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号