首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a novel single-stage light-emitting diode (LED) driver with interleaved power-factor corrections (PFC) suitable for energy-saving streetlight applications. The presented circuit combines an interleaved boost PFC converter with a half-bridge-type series-resonant converter cascaded with a full-bridge rectifier into a single-stage power-conversion topology. Two inductors in the interleaved boost PFC converter sub-circuit are designed to operate in discontinuous-conduction mode (DCM) in order to achieve input-current shaping, and the half-bridge-type series-resonant converter cascaded with a full-bridge rectifier is designed to obtain zero-voltage switching (ZVS) on two power switches to reduce their switching losses. The proposed driver features high power factor, low total-harmonic distortion (THD) of input current, and high circuit efficiency, all of which results in energy savings. A prototype driver is developed and implemented to supply a 165W-rated LED streetlight module with utility-line input voltages ranging from 210 V to 230 V. In addition, satisfactory experimental results have demonstrated the feasibility of the proposed LED driver.  相似文献   

2.
ABSTRACT

In this study, the impact of DC electric and magnetic fields on the output power, open-circuit voltage, and photocurrent density of a silicon photovoltaic (PV) cell/module is assessed. In this regard, the influence of DC electric and magnetic fields is first evaluated in theory by formulating and discussing related basis and concepts. Then, experimental measurements and data obtained from two different sets of experiments are given that verify theoretical results. In theory and practice, it is shown that depending on the direction of a DC electric field applied to a silicon PV cell/module, it causes an increase or reduction in the output power and open-circuit voltage of the PV cell/module. In detail, when the DC electric field points in the direction of the junction electric field of the PV cell(s), the output power and open-circuit voltage of the silicon PV cell/module increase, otherwise the output power and open-circuit voltage decrease. Regarding the magnetic field, it is proved that depending on the direction of a DC magnetic field applied to a silicon PV cell/module, different effects are observed. In detail, when the DC magnetic field points along the junction electric field of the PV cell(s), it has no effect on the output power and open-circuit voltage of the silicon PV cell/module. But, the output power and open-circuit voltage of the silicon PV cell/module decrease when the DC magnetic field points in the other directions. Moreover, the reduction in the output power and open-circuit voltage reaches its peak when the DC magnetic field is applied in the direction perpendicular to the junction electric field.  相似文献   

3.
This study designs and applies a new energy-conservation type solar-powered lighting system using a high-pressure sodium lamp to areas not having any utility company's electricity. The proposed system uses a zero-voltage-switching (ZVS) DC/DC converter in the batteries’ charge circuit to reduce the switching loss for a higher charging efficiency. Said system also adopts the maximum power point tracking (MPPT) technique to maximize the solar panels’ photovoltaic conversion capability. When dark, the batteries in the proposed system will discharge, with a raised voltage, through a push-pull DC/DC converter; said voltage, as the input voltage of the series-parallel resonant inverter, will be regulated to dim the lamp. To enable the efficient usage of the batteries’ stored energy capacity, this control scheme of the proposed system may adjust the night-time discharge time lengths, according to season difference, and compute the usable capacity for the load, according to the batteries’ charged voltage, so as to select a suitable pre-scheduled light-dimming curve for the lamp to achieve energy conservation for the batteries and continuity in lighting when dark.  相似文献   

4.
This paper focuses on investigating the current--voltage (I--V) and power--voltage (P--V) characteristics of a photovoltaic (PV) module connected in various configurations like series, parallel, and series-parallel. The performance analysis of PV module has been carried out under uniform and non-uniform conditions such as change in irradiation (passing clouds), change in temperature, accumulation of dust, and change in wind speed using MATLAB-Simulink environment. From the observed results, it has been indicated that for a given number of PV modules, the array configurations affect the maximum available output power and more local maxima are found under partially shaded conditions. Moreover, the comparative analysis of PV module has been performed for various configurations under the above disturbances. From the results, it is evident that even under non-uniform conditions, the parallel configuration of PV modules is more prominent and maximum output power is obtained. Further, parallel layout is particularly convenient for minimizing shadowing effects. The parameters of the PV module have been obtained from the manufacturer datasheet (KC200GT) for these investigations.  相似文献   

5.
A triple-objective optimal sizing method based on a dynamic strategy is presented for an islanded hybrid energy microgrid, consisting of wind turbine, solar photovoltaic, battery energy storage system and diesel generator. The dynamic strategy is given based on a dynamic complementary coordination between two different master-slave control modes for maximum renewable energy utilization. Combined with the proposed strategy, NSGA-II-based optimization program is applied to the sizing optimization problem with triple different objectives including the minimization of annualized system cost, the minimization of loss of power supply probability and the maximization of utilization ratio of renewable energy generation. The sizing results and the proposed strategy are both compared and analyzed to validate the proposed method in a real case of an islanded hybrid energy microgrid on Dong’ao Island, China.  相似文献   

6.
A contactless transformer coupling (CTC) transmission system transmits electric energy via an alternating magnetic field through an air-gap. The transmitted power can be enhanced by the application of resonant effects. Transmitting and receiving coils are usually single layer solenoids with series capacitors, which, in combination, allow the receiving element to be tuned to the required transmitter frequency. An input DC source is used to obtain high-frequency AC signal through the standardized half-bridge DC/AC switching circuit. Further, the high-frequency signal passes through matching transformer and contactless coupling induction coil, which can be considered as an isolated input and output stage. Coupling must be tight to achieve high efficiency. This paper then applies the methods of Taguchi parameter design forthe contactless transformer coupling transmission system, which enhances the output voltage, loss factor, and output efficiency of the transmission system. The results of measurement verify the feasibility of this structure in the experiment.  相似文献   

7.
The two-stage thermoelectric couple (TE couple) and the multilayer TE couple are proposed and their output performance is compared with the conventional TE couple in this paper. Three dimensional (3-D) numerical and finite element models are established for these three types of TE couples which are analyzed in the ANSYS Workbench environment. Simulation results show that the output voltage and the current of the two newly designed TE couples increase in a certain extent than those of the conventional device before the load resistance reaches a critical value, however, the multilayer TE couple has the best performance. Similar conclusions can be drawn from the results of comparisons with the maximum output power and the maximum heat conversion efficiency between different types of TE couples. When thicknesses of the intermediate ceramic substrate and the intermediate copper conductor change, the output performance of the two newly-designed types of TE couples can be improved further. The maximum output power and the maximum heat conversion efficiency of the multilayer TE couple increase by 71.15% and 14.87%, respectively, when compared with those for the conventional device under certain conditions. Therefore, the multilayer TE couple has the potential to be one of the future development directions of TE couple structures.  相似文献   

8.
Conventional solar photovoltaic (PV) module converts the light component of solar radiation into electrical power, and heat part is absorbed by module increasing its operating temperature. Combined PV module and heat exchanger generating both electrical and thermal powers is called as hybrid photovoltaic/thermal (PV/T) solar system. The paper presents the design of a PV/T collector, made with thin film PV technology and a spiral flow absorber, and a simulation model, developed through the system of several mathematical equations, to evaluate the performance of PV/T water collectors. The effect of various parameters on the thermal and electrical efficiency has been investigated to obtain optimum combination of parameters. Finally, a numerical simulation has been carried out for the daily and annual yield of the proposed PV/T collector, and comparison with a standard PV module is discussed.  相似文献   

9.
Outdoor power performance measurements of silicon (Si) solar cells and its assembled module were carried out at the coastal site of geographical location of 12.0107° Latitude and 79.856° Longitude, of Puducherry, India. Measurements were analyzed in comparison with the daily solar illumination data obtained by an optical pyranometer deployed with global measurement condition. It was found that the module required ~3 times more illumination to stabilize in its output voltage than the requirement of an individual cell and exhibited 11.35% loss in its efficiency compared to its STC value. Proposed operation of 5.30 hours was found resulting in an output rating fixed at ~40% from its 100% full capacity.  相似文献   

10.
The module performance is an important consideration for selecting PV technologies for electricity production, as well as the economic aspect. Also, PV energy yield under varying environmental conditions is largely dependent on the type of technology used. Therefore, this article presents a comparative analysis of different PV modules, of the same power, namely, monocrystalline, polycrystalline, amorphous silicon and hybrid, based on performance, cost and space requirement. The performance is evaluated in terms of module power output, yield, capture losses, fill factor and efficiency, according to the IEC 61724 standards, using Gwako, Nigeria as a case study. A novel technique called Fundamental PV Module Performance Analysis is used to analyze and compare the performance of the PV modules. The performance of a single module is then employed to calculate the overall performance of a PV array designed for a small off-grid house, and a suitable module is determined amongst the modules under study. Results provide insights into the behaviors of the different technologies with the environmental factors of the location, which have an impact on their power and kWh/kW outputs and the efficiency. This knowledge, coupled with the understanding of the constraints of cost and the module space requirements would be useful to researchers, engineers, installers etc. in Nigeria, for planning and developing photovoltaic electric systems for off-grid applications.  相似文献   

11.
Simulation of helio-photovoltaic system is continuously undergoing revolution through diverse parameter modifications which closely mimic the experimental data. In retrospect, the current work has presented a nonlinear modification of equivalent circuit parameters and simulated the same for different semiconductors (crystalline and thin films); furthermore, established a mathematical relation between the coefficients of solar irradiance and module temperature (SIMT); moreover, investigated the influence of SIMT on the model parameters. The simulation upshot reveals that increment in solar irradiance (SI) intensifies the output current whereas an increase in module temperature (MT) diminishes the output voltage; the SIMT coefficients developed validated well with the manufacturers data; the influence of SI was evident on the photon current, diode current, and shunt resistance whereas the effect of MT was pronounced on the diode current, ideality factor, and shunt resistance. Thus, the provision made by this work is essential for advanced design and simulation of helio-photovoltaic systems.  相似文献   

12.
This article presents a two-stage maximum power point tracking (MPPT) controller using artificial neural network (ANN) for photovoltaic (PV) standalone system, under varying weather conditions of solar irradiation and module temperature. At the first-stage, the ANN algorithm locates the maximum power point (MPP) associated to solar irradiation and module temperature. Then, a simple controller at the second-step, by changing the duty cycle of a DC–DC boost converter, tracks the MPP. In this method, in addition to experimental data collection for training the ANN, a circuit is designed in MATLAB-Simulink to acquire data for whole ranges of weather condition. The whole system is simulated in Simulink. Simulation results show small transient response time, and low power oscillation in steady-state. Furthermore, dynamic response verifies that this method is very fast and precise at tracking the MPP under rapidly changing irradiation, and has very low power oscillation under slowly changing irradiation. Experimental results are provided to verify the simulation results as well.  相似文献   

13.
ABSTRACT

The uncertainty in the output power of the photovoltaic (PV) power generation station due to variation in meteorological parameters is of serious concern. An accurate output power prediction of a PV system helps in better design and planning. The present study is carried out for the prediction of output power of PV generating station by using Support Vector Machines. Two cases are considered in the present study for prediction. Case-I deals with the prediction of PV module parameters such as Voc, Ish, Rs, Rsh, Imax, Vmax, Pmax, and case-II deals with the prediction of power generation parameters such as PDC, PAC, and system efficiency. Historical data of PV power station with an installed capacity of 10 MW and weather information are used as input to develop four different seasons-based SVM models for all parameters. The performance results of the models are presented in terms of Mean Relative Error (MRE) and Root Mean Square Error (RMSE). Additionally, the performance results obtained with polynomial and Radial Based Function kernel are also compared to show that which kernel has better prediction accuracy, and practicability. The result shows that the minimum average RMSE and MRE for case-I with Radial Based Function kernel are 0.034%, 0.055%, 0.002%, 1.726%, 0.044%, 0.047%, 2.342%, and 0.005%, 0.014%, 0.079%, 0.885%, 0.005%, 0.007%, 0.013%, and for case-II with poly kernel are 0.014%, 0.016%, 0.149% and 0.011%, 0.0175, 1.03%, respectively. The present study will be helpful to provide technical guidance to the prediction of the PV power System.  相似文献   

14.
Most of the energy conversion in industrial devices and equipment is completed by the motor. The acquirement of motor parameters becomes very important for designing the motor drives. The aim of this paper is to design and implement a motor measurement system. Through the processing of an Advanced RISC Machines (ARM) microcontroller, the various parameters of motors such as input voltage, input current, input power, motor speed, and motor torque can be obtained. Consequently, the torque constant, load torque, viscous friction, and the inertia of the motor are calculated and achieved. The motor parameters can be commanded and displayed in the designed human interface of a PC via USB communication. The hardware system designed in this system includes an ARM microcontroller, an inverter, a voltage sensor, a current sensor, a torque sensor, and power supply. The software programming is developed under the Visual Studio 2012 environment development platform using the C language. Finally, the prototype of the motor measurement system is completed and verified. The experimental results for the motor parameters and torque/speed characteristic are demonstrated and show the feasibility of the complete designed system.  相似文献   

15.
ABSTRACT

In this paper, an artificial neural network-based control strategy is proposed for low voltage DC microgrid (LVDC microgrid) with a hybrid energy storage system (HESS) to improve power-sharing between battery and supercapacitor (SC) to suit the demand-generation imbalance, maintain state-of-charge (SOC) within boundaries and thereby to regulate the dc bus voltage. The conventional controller cannot track the SCs current rapidly with the high-frequency component that will place dynamic stress on the battery, further resulting in shorter battery life. The significant advantage is that in the proposed control strategy, redirections of unwaged battery currents to SCs for fast compensations enhance battery life span. The proposed control strategy effectiveness was investigated by simulations, including a comparison of overshoot/undershoot and settling time in dc bus voltage with a conventional control strategy. The results have been experimentally verified by hardware-in-loop (HIL) on a field-programmable gate array (FPGA)-based real-time simulator.  相似文献   

16.
详细介绍了气压阀门控制器的设计过程及仿真结果。该控制器采用倍压芯片进行±15 V供电设计,采用运放+数字电位器进行反馈和给定的调理电路设计,采用运放+电阻电容进行控制电路及驱动电路的设计。该控制器采用前馈控制器B(s)+偏差控制器A(s)对压力进行控制。文中给出了控制器的设计过程和仿真实验波形。从仿真波形的控制结果看,该控制器能够快速响应大偏差,根据偏差大小提前输出负压信号,并能进行稳态精度调节,实现快速准确调节气压的目的。  相似文献   

17.
In this work, an attempt has been made to harvest green energy from piezoelectric material using fluid flow in a conduit. Piezoelectric Energy Harvesting using Fluid Flow (PEHF) experimental model has been designed and the outputs obtained are compared with results obtained from simulations using ANSYS (computational fluid dynamics) and also with the mathematical modeling. The PEHF model has been utilized to analyze the effect of flow rate of water with reference to energy extracted. The full wave bridge rectifier and voltage doubler circuits have been used to obtain the direct current (DC) from the PEHF model. It is observed that the output obtained using experiments holds good in agreement with the results retrieved through simulations and mathematical results. The increase in flow rate of fluid leads to initially increase and then decrease in output of PEHF model as the maximum energy generated when flow rates (external force) matches with the frequency of excitation of the systems, i.e., at its resonance. The maximum energy output is generated at its resonance frequencies. It is observed that the full wave bridge rectifier circuit gives greater output as compared to a voltage doubler circuit.  相似文献   

18.
This paper presents a dynamic temperature model for a proton exchange membrane fuel cell (PEMFC) system. The proposed model overcomes the complexity of conventional models using first-order expressions consisting of load current and ambient temperature. The proposed model also incorporates a PEMFC cooling system, which depends upon the temperature difference between events. A dynamic algorithm is developed to detect load changing events and calculate instantaneous PEMFC temperature variations. The parameters of the model are extracted by employing the lightning search algorithm (LSA). The temperature characteristics of the NEXA 1.2 kW PEMFC system are experimentally studied to validate model performance. The results show that the proposed model output and the temperature data obtained from experiments for linear and abrupt changes in PEMFC load current are in agreement. The root-mean-square error between the model output and experimental results is less than 0.9. Moreover, the proposed model outperforms the conventional models and provides advantages such as simplicity and adaptability for low and high sampling data rates of input variables, namely, load current and ambient temperature. The model is not only helpful for simulations but also suitable for dynamic real-time controllers and emulators.  相似文献   

19.
The drying up of the fossil energy sources and the damage from unchecked carbon emissions demand the development of low carbon economy, which promotes the development of new energy sources, such as wind power and photovoltaic. However, the direct connections of wind/photovoltaic power into power grid bring great impacts on power systems, thus affecting the security and stability of power system operations, which challenges the power system dispatching. In despite of many methods for power system dispatch, lack of the models, for power system containing wind power and photovoltaic considering carbon trading and spare capacity variation (PSCWPCCTSCV), restricts the further optimal operations of power systems. This paper studies the economic dispatch modeling problem of power system containing wind power and photovoltaic, establishes the model of economic dispatch of PSCWPCCTSCV. On this basis, adaptive immune genetic algorithm is applied to conduct the economic operation optimization, which can provide the optimal carbon trading price and the optimal power distribution coefficient. Finally, simulations based on the newly proposed models are made to illustrate the economic dispatch of PSCWPCCTSCV. The results show that optimization with the proposed model can not only weaken the volatility of the new energy effectively, but also reduce carbon emissions and reduce power generation costs.  相似文献   

20.
ABSTRACT

Carbon corrosion caused by H2/O2 interface during the shut-down process is one of the factors that exacerbate the overall degradation of proton exchange membrane fuel cells (PEMFC) in automotive applications. Numerous studies have shown that system strategies are beneficial for reducing the duration of H2/O2 interface and alleviating performance degradation. In this paper, three different shut-down strategies are investigated and compared based on the internal behaviors acquired by in-situ measurements. For the three shut-down strategies, reverse current and high potential are mainly observed in a lower constant current and constant power strategy. Comparatively speaking, the internal uniformity of the cell under constant current and power load is better than that with constant voltage strategy when the shut-down time is about the same. The results suggest that adopting a higher constant power load followed by a larger voltage load during the shut-down process can effectively shorten the shut-down time and relieve carbon corrosion. These results add significant new insights into the shut-down process and will be of practical importance in directing design of combined shut-down strategy that can withstand carbon corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号