首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
To assess metal mobility in pruning waste and biosolids compost (pH?6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g?L?1, pH?2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7?±?0.1–3.3?±?0.1 mg?kg?1), Fe (49.2?±?5.2–76.8?±?6.8 mg?kg?1), and Mn (7.2?±?1.1–11.4?±?0.7 mg?kg?1) in leaves of R. officinalis, whereas the concentration of only Mn (25.4?±?0.3–42.2?±?2.9 mg?kg?1) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.  相似文献   

2.
Although fish is widely consumed by humans for its nutritional properties, accumulation of heavy metals can pose serious health hazards. Widespread common carp Cyprinus carpio is cultured worldwide and represents an economically important species for fisheries in several countries. These include Turkey, where C. carpio often makes for a large part of the sales of the locally marketed fish and also for a traditional dish. This study provides a review of bioaccumulation of metals in tissues of C. carpio from water bodies of Anatolia and also includes reference to worldwide studies. From 42 water bodies across the region, 27 metals in total were studied, of which Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were the most widely analysed, mainly in the muscle, liver and gill tissues. Amongst the potentially toxic metals, Cd, Cr and Pb occurred in several water bodies at concentrations not only above maximum allowed limits but also higher relative to other water bodies worldwide, even though As, Hg and Ni were also sometimes present at potentially hazardous concentrations. The essential metals Cu, Fe, Mn, Se and Zn were detected at various concentrations, with the latter two occasionally above limit. All water bodies flagged as having especially critical (i.e. above limit) concentrations of toxic metals supported C. carpio fisheries from highly populated regions, raising concern about food safety and calling for preventative measures. Given the significantly lower bioaccumulation levels in the muscle relative to the liver and gill tissues, it is suggested that consumption of C. carpio as fillets may be safer than after processing into e.g. meat balls and sausages. The limits of 1.0 μg/g for Cr and 1.15 μg/g for Se, currently lacking from the Turkish food safety legislation, are proposed, and it is suggested that a similar meta-analytical approach as adopted in this study may benefit other countries where C. carpio represents an important fisheries resource.  相似文献   

3.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

4.
Though the fruits of Averrhoa bilimbi and A. carambola are economically and medicinally important, they remain underutilized. The present study reports heavy metal quantitation in the fruit samples of A. bilimbi and A. carambola (Oxalidaceae), collected at two stages of maturity. Heavy metals are known to interfere with the functioning of vital cellular components. Although toxic, some elements are considered essential for human health, in trace quantities. Heavy metals such as Cr, Mn, Co, Cu, Zn, As, Se, Pb, and Cd were analyzed by atomic absorption spectroscopy (AAS). The samples under investigation included, A. bilimbi unripe (BU) and ripe (BR), A. carambola sour unripe (CSU) and ripe (CSR), and A. carambola sweet unripe (CTU) and ripe (CTR). Heavy metal analysis showed that relatively higher level of heavy metals was present in BR samples compared to the rest of the samples. The highest amount of As and Se were recorded in BU samples while Mn content was highest in CSU samples and Co in CSR. Least amounts of Cr, Zn, Se, Cd, and Pb were noted in CTU while, Mn, Cu, and As were least in CTR. Thus, the sweet types of A. carambola (CTU, CTR) had comparatively lower heavy metal content. There appears to be no reason for concern since different fruit samples of Averrhoa studied presently showed the presence of various heavy metals in trace quantities.  相似文献   

5.
Aguelmam Azizgza (LAZ) and Dayet Afourgah (DAF) are two Moroccan natural lakes located in a humid hydrographic basin of the Middle Atlas Mountains. Both are considered important reservoirs of plant and animal biodiversity. In addition, they are extensively used for recreational and fishing activities and as a water source for irrigation of agricultural crops. Recurrent cyanobacteria scum episodes in the two water bodies have been reported, Microcystis being the main genus in the scums. Here, we report on the toxic potential of three Microcystis aeruginosa strains isolated from those lakes: Mic LAZ and Mic B7 from LAZ and Mic DAF isolated from DAF. The toxic potential was checked by their microcystin (MC) content and the presence of mcy genes involved in MC synthesis. The identification and quantification of MC variants were performed by high-performance liquid chromatography-photo-diode array. The detection of mcy genes was achieved by whole-cell multiplex PCR that allowed the simultaneous amplification of DNA sequences corresponding to specific mcy regions. MC content of cultured cells, as MC-LR equivalents per gram cell biomass, was slightly higher in Mic LAZ (ca. 860) than in Mic B7 (ca. 700) and Mic DAF (ca. 690). Four MC variants were identified in the three isolates: MC-WR, MC-RR, MC-DM-WR, and MC-YR. The presence of toxic Microcystis strains in the two studied lakes may be regarded as an environmental and health hazard, especially during periods of bloom proliferation. It would be recommended the use of two complementary techniques, as those utilized herein (HPLC and mcy detection) to alert on highly probable toxicity of such lakes.  相似文献   

6.
Sugarcane molasses-based distillery spent wash (DSW) is well known for its toxicity and complex mixture of various recalcitrant organic pollutants with acidic pH, but the chemical nature of these pollutants is unknown. This study revealed the presence of toxic organic acids (butanedioic acid bis(TMS)ester; 2-hydroxysocaproic acid; benzenepropanoic acid, α-[(TMS)oxy], TMS ester; vanillylpropionic acid, bis(TMS)), and other recalcitrant organic pollutants (2-furancarboxylic acid, 5-[[(TMS)oxy] methyl], TMS ester; benzoic acid 3-methoxy-4-[(TMS)oxy], TMS ester; and tricarballylic acid 3TMS), which are listed as endocrine-disrupting chemicals. In addition, several major heavy metals were detected, including Fe (163.947), Mn (4.556), Zn (2.487), and Ni (1.175 mg l?1). Bacterial community analysis by restriction fragment length polymorphism revealed that Bacillus and Stenotrophomonas were dominant autochthonous bacterial communities belonging to the phylum Firmicutes and γ-Proteobacteria, respectively. The presence of Bacillus and Stenotrophomonas species in highly acidic environments indicated its broad range adaptation. These findings indicated that these autochthonous bacterial communities were pioneer taxa for in situ remediation of this hazardous waste during ecological succession. Further, phytotoxicity assay of DSW with Phaseolus mungo L. and Triticum aestivum revealed that T. aestivum was more sensitive than P. mungo L. in the seed germination test. The results of this study may be useful for monitoring and toxicity assessment of sugarcane molasses-based distillery waste at disposal sites.  相似文献   

7.
The poor operational status of some wastewater treatment plants often result in the discharge of inadequately treated effluent into receiving surface waters. This is of significant public health concern as there are many informal settlement dwellers (ISDs) that rely on these surface waters for their domestic use. This study investigated the treatment efficiency of two independent wastewater treatment plants (WWTPs) in Durban, South Africa and determined the impact of treated effluent discharge on the physicochemical and microbial quality of the receiving water bodies over a 6-month period. Presumptive Escherichia coli isolates were identified using biochemical tests and detection of the mdh gene via PCR. Six major virulence genes namely eae, hly, fliC, stx1, stx2, and rfbE were also detected via PCR while antibiotic resistance profiles of the isolates were determined using Kirby-Bauer disc diffusion assay. The physicochemical parameters of the wastewater samples ranged variously between 9 and 313.33 mg/L, 1.52 and 76.43 NTUs, and 6.30 and 7.87 for COD, turbidity, and pH respectively, while the E. coli counts ranged between 0 and 31.2?×?103 CFU/ml. Of the 200 selected E. coli isolates, the hly gene was found in 28 %, fliC in 20 %, stx2 in 17 %, eae in 14 %, with stx1 and rfbE in only 4 % of the isolates. Notable resistance was observed toward trimethoprim (97 %), tetracycline (56 %), and ampicillin (52.5 %). These results further highlight the poor operational status of these WWTPs and outline the need for improved water quality monitoring and enforcement of stringent guidelines.  相似文献   

8.
The presence of heavy metals in Triticum aestivum L. growing on the soil enriched with granular sludge after chemical protection was observed. The five variants of treatments using herbicide (Chwastox Turbo 340SL) and four fungicides (Topsin M 500SC, Amistar 250SC, Artea 330EC, and Falcon 460EC) were performed. On control and experimental plots, the concentration of Ni, Pb, Cr, and Cu in wheat leaves were in the range 0.32–0.99, 0.92–1.57, 0.89–6.31, and 7.08–12.59 mg/kg and in grains 0.03 to 0.11, 0.14–0.25, 0.11–0.76, and 1.06–1.46 mg/kg, respectively. The concentration of Pb in grain protected by MCPA and 2,4-D with thiophanate-methyl and azoxystrobin was higher than the maximum levels of 0.20 mg/kg D.M. The bioconcentration factor (BCF) differed and depended on chemical protection. The highest value of BCF was achieved for Cd. The statistical analysis showed a significant correlation between concentration of metals and quality parameters of wheat. One observed significant negative correlations between Ni/Zeleny sedimentation value (r = ?0.51) and between Pb/starch content (r = ?0.57). Positive correlations were observed between Cd/yield, the number of grains/ergosterol concentration (respectively, r = 0.41, r = 0.55, r = 0.56), and Zn/thousand grain weight (r = 0.50) at a p ≤ 0.05.  相似文献   

9.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

10.
To verify the applicability of identifying Microcystis aeruginosa by matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS), mixed and field samples were employed to study the sensitivity and the analysis power, respectively. Series diluted samples and artificially mixed samples by the M. aeruginosa NIES-843 strain were designed to verify the sensitivity. The lowest detection limit was 1.955?×?106 cells in pure samples, while for mixed samples, the lowest detection limit and ratio of NIES-843 strain were 2.88?×?106 cells and 33.7%, respectively. The results provided a reference for the reasonable volume of the water sample in which the M. aeruginosa could be detected. Ribosomal protein biomarkers for identifying M. aeruginosa which were successfully detected from the field samples in Taihu Lake, indicated that the identification of M. aeruginosa by MALDI-TOF MS could be applied in field samples. Furthermore, different genetic types of M. aeruginosa strains were also detected at different locations in Taihu Lake, which revealed the diversity of M. aeruginosa and the detection power of MALDI-TOF MS at the strain level for the field samples. The sensitivity and detection power in the analysis of M. aeruginosa by the MALDI-TOF MS demonstrated the applicability of this method in routine environmental monitoring.  相似文献   

11.
Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3–2.3 × 105 cell ml?1) was always higher than at Port Klang (0.3–7.1 × 104 cell ml?1) (p < 0.001). μ ranged up to 0.98 day?1 (0.51 ± 0.29 day?1), while g ranged from 0.02 to 0.31 day?1 (0.15 ± 0.07 day?1) at Port Klang. At Port Dickson, μ and g averaged 0.47 ± 0.13 day?1 (0.29–0.82 day?1) and 0.31 ± 0.14 day?1 (0.13–0.63 day?1), respectively. Synechococcus abundance did not correlate with temperature (p > 0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi ? 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p < 0.05). As for grazing loss rates, they were independent of either nutrients or light intensity (p > 0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.  相似文献   

12.
The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala—silty loam and Pacca—clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg?1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg?1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.  相似文献   

13.
The concentrations of seven toxic metals (cadmium (Cd), nickel (Ni), chromium (Cr), arsenic (As), lead (Pb), copper (Cu), and zinc (Zn)) were determined in sediments and the soft tissues of a bivalve species (Meretrix lyrata) collected from the Tien Estuary in Tien Giang Province, South Vietnam. The total metal concentrations in sediments (mg/kg dry weight) increased as Cd (0.06) < Cu (5.0) < Pb (13.9) < As (16.3) < Ni (24) < Cr (50) < Zn (62). Speciation analysis revealed that these metals existed mainly in the residual fraction (43–94%), followed by the Fe-Mn oxide-bound (5–35%) and organic/sulfide-bound (0.6–9.2%) fractions. The metal concentrations in M. lyrata (mg/kg dry weight) were in the ranges of 1.3–1.9 (Cd), 1.5–2.8 (Ni), 1.8–3.4 (Cr), 11–16 (As), 0.3–0.6 (Pb), 6.9–8.7 (Cu), and 95–128 (Zn), which are safe for human consumption. The order of the mean biota-sediment accumulation factor (BSAF) of the metals in the non-residual fractions of the sediment for M. lyrata was Cd > Cu > As > Zn > Cr > Ni > Pb. The Risk Assessment Codes (RACs) suggest that the highest mobility of Cd (with RAC = 37%) poses greater environmental risk to aquatic biota. Correlation analysis results show that M. lyrata can be used as a biomonitor of Cd and Cu pollution in the exchangeable, acid-soluble, and non-residual sediment fractions.  相似文献   

14.
Oxidative stress (OS) and fluctuating asymmetry (FA) as risk markers for environmental stress are widely used to predict changes in the health and fitness of many animals exposed to pollutants. However, from the perspective of protecting declining amphibians, it remains to be verified which one would be a reliable indicator for amphibians exposed to long-term heavy metal pollution under natural conditions. In this study, the OS and FA of Bufo raddei exposed to natural heavy metal pollution were analyzed to determine which marker is more accurate for indicating heavy metal-induced stress. Three years of data were collected during the breeding season of B. raddei from Baiyin (BY), which has been mainly contaminated with Cu, Zn, Pb, and Cd compounds for a long period, and from Liujiaxia (LJX), which is a relatively unpolluted area. Unexpectedly, although significant accumulation of the four heavy metals was found in the kidney and liver of B. raddei from BY, the levels of superoxide dismutase, glutathione peroxidase, and malondialdehyde in these two organs were found to be irregular, with low repeatability in both BY and LJX. However, significant differences in the levels of FA were observed in B. raddei populations from these two areas over the past 3 years (P < 0.01). The degrees of FA in B. raddei populations from BY and LJX were assessed as degree 4 and 1, respectively. In short, this study suggested that FA was a more reliable and effective indicator than OS to monitor and predict long-term environmental stress on anuran amphibians.  相似文献   

15.
The level of mercury, iron, copper, and zinc was measured in 18 Great cormorants (Phalacrocorax carbo) collected from Anzali and Gomishan wetlands in the south of the Caspian Sea. The mean level of metals in dried tissues of the muscle, liver, and kidney was 2.26, 5.71, 3.79—Hg; 943.54, 379.97, 348.05—Fe; 42.64, 14.78, 60.79—Cu, and 71.97, 134.63, 77.82—Zn, respectively (mg/kg). There was no significant different between genders in terms of accumulation of metals, except for copper in the kidney. The results of Pearson correlation showed a positive and strong relationship between the fat in the liver and mercury (r?=?0.95, R2?=?0.90). Also, there was a significant difference between the values of all metals with the allowable limits presented in EPA, WHO, and CCME, where all of values were above standard levels. Thus, as the muscles of the bird are sometimes eaten by humans, this result is a serious warning. Nevertheless, the relatively high levels of heavy metals accumulated in different tissues of Great cormorant at that time are a result of their high weight and nourishment they have at the terminal days of their migration due to lack of natural physical activity. Regarding to the importance of heavy metals in birds, we suggest the same study to be conducted on the species in other seasons and wetlands.  相似文献   

16.
The coastal population in East Africa is growing rapidly but sewage treatment and recycling facilities in major cities and towns are poorly developed. Since estuarine mangroves are the main hotspots for pollutants, there is a potential for contaminants to accumulate in edible fauna and threaten public health. This study analysed trace metals in muscle tissues of the giant mud crabs (Scylla serrata) and the giant tiger prawns (Penaeus monodon) from the Tanzanian coast, in order to determine the extent of bioaccumulation and public health risks. A total of 180 samples of muscle tissues of S. serrata and 80 of P. monodon were collected from nine sites along the coast. Both species showed high levels of trace metals in the wet season and significant bioaccumulation of As, Cu and Zn. Due to their burrowing and feeding habits, mud crabs were more contaminated compared to tiger prawns sampled from the same sites. Apart from that, the measured levels of Cd, Cr and Pb did not exceed maximum limits for human consumption. Based on the current trend of fish consumption in Tanzania (7.7 kg/person/year), the measured elements (As, Cd, Co, Cu, Mn, Pb and Zn) are not likely to present health risks to shellfish consumers. Nevertheless, potential risks of As and Cu cannot be ruled out if the average per capita consumption is exceeded. This calls for strengthened waste management systems and pollution control measures.  相似文献   

17.
Detecting pathogenic protozoa in drinking-water treatment sludge is a challenge as existing methods are complex, and unfortunately, there are no specific technical standards to follow. Selecting an efficient analytical method is imperative in developing countries, such as Brazil, in order to evaluate the risk of parasite infection. In this context, three methods to detect Giardia spp. cysts and Cryptosporidium spp. oocysts were tested in sludge generated when water with protozoa and high turbidity was treated. Jar testing was carried out using polyaluminium chloride as a coagulant to generate the residue to be analyzed. The results showed that calcium carbonate flocculation with reduced centrifugation and immunomagnetic separation obtained the highest recoveries in the tested matrix showing 60.2%?±?26.2 for oocysts and 46.1%?±?5 for cysts. The other two methods, the first using the ICN 7× cleaning solution and the second considering the acidification of the sample, both followed by the immunomagnetic separation step, also presented high recoveries showing 41.2%?±?43.3 and 37.9%?±?52.9 for oocysts and 11.5%?±?85.5 and 26%?±?16.3 for cysts, respectively. Evidently, these methods and others should be studied in order to make it possible to detect protozoa in settled residue.  相似文献   

18.
The current study investigates the potential for discolouration and degradation of Reactive Blue 19 and Reactive Black 5 textile dyes by endophytic fungi Phlebia sp. and Paecilomyces formosus as well as the potential cytotoxicity of products or by-products generated by the treatments in fish erythrocytes. It was observed at 30 days that both endophytes showed biodegradation activity with 0.1 g mL?1 of dyes. P. formosus showed highest extracellular and intracellular protein content levels after the 15th day, and Phlebia sp. stands out for production of extracellular laccase, indicating that this enzyme may be associated with the decolouration capacity. The dyes showed toxic effects in fishes at 0.01 g mL?1 concentration, resulting in the appearance of micronuclei in erythrocyte cells. When degraded dyes treated by endophytes were tested, the frequency of micronuclei reduced approximately 20%, indicating the effectiveness of these endophytic in the treatment of textile dyes with less environmental impact, thus indicating a potential for application of these fungi in bioremediation process.  相似文献   

19.
20.
Mercury contamination in the water bodies of developing countries is a serious concern due to its toxicity, persistence, and bioaccumulation. Vembanad, a tropical backwater lake situated at the southwest coast of India, is the largest Ramsar site in southern India. The lake supports thousands of people directly and indirectly through its resources and ecosystem services. It is highly polluted with toxic pollutants such as heavy metals, as it receives effluent discharges from Kerala’s major industrial zone. In the present study, water, pore water, sediment, and fish samples collected from Vembanad Lake were analysed for total mercury (THg) and methyl mercury (MHg) contents. The maximum concentrations of THg and MHg in surface water samples were31.8 and 0.21 ng/L, respectively, and those in bottom water samples were 206 and 1.22 ng/L, respectively. Maximum concentration of THg in surface sediment was observed during monsoon season (2850 ng/g) followed by that in the pre-monsoon season (2730 ng/g) and the post-monsoon season (2140 ng/g). The highest sediment concentration of MHg (202.02 ng/g) was obtained during monsoon season. The spatial variation in the mercury contamination clearly indicates that the industrial discharge into the Periyar River is a major reason for pollution in the lake. The mercury pollution was found to be much higher in Vembanad Lake than in other wetlands in India. The bioaccumulation was high in carnivorous fishes, followed by benthic carnivores. The THg limit in fish for human consumption (0.5 mg/kg dry wt.) was exceeded for all fish species, except for Glossogobius guiris and Synaptura orientalis. The concentration of THg was five times higher in Megalops cyprinoides and four times higher in Gazza minuta. Significant variation was observed among species with different habits and habitats. Overall, risk assessment factors showed that the mercury levels in the edible fishes of Vembanad Lake can pose serious health impacts to the human population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号