首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day. Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.  相似文献   

2.
Municipal solid waste disposal in Portugal   总被引:1,自引:0,他引:1  
In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.  相似文献   

3.
Rapid economic growth, increasing population and change in living standards contribute to increasing the generation rate of municipal solid waste (MSW) in Denizli city, like other Turkish cities. The improper and poor MSW management system (old system) in Denizli caused environmental problems originating from the uncontrolled release of methane and leachate. In addition, the disposal of recyclable materials in unsanitary landfills is responsible for the consumption and destruction of natural sources. This paper presents a general overview of old and new MSW management practices in Denizli. Detailed data on MSW management practices including collection, transportation, disposal and recycling have been presented. The amount of solid waste generated in Denizli over the last decade has increased steadily over the years, from 108,500 tons in 1995 to 179,495 tons in 2006. The average MSW generation rate was found to be 1.23kg/day per capita. The major constituent of MSW in Denizli is food waste, but the percentage of recyclable waste has increased significantly recently. Except for metal wastes, the percentages of recyclable waste materials in Denizli are higher than in all neighborhood cities. The objective of this study is to compare the old and new MSW management systems in Denizli city. The MSW management system has been changed entirely last five years. A dumpsite was closed and a sanitary landfill with a composting facility was constructed. In addition, source separated collection has been carried out since 2002. The quantity of recyclable waste collected increased from 195 to 1549 tons. The amount of recyclable waste will continue to be increased by expanding the source separation collection system to all the districts of the city and preventing scavenging. Thus, revenue from recyclable waste ($7227 in 2006) is expected to increase. In addition, the capacity of the composting facility will be increased. Most importantly, information to increase public participation and awareness in municipal recovery programs has to be provided.  相似文献   

4.
The debate on different waste management practices has become an issue of utmost importance as human activities have overloaded the assimilative capacity of the biosphere. Recent Italian law on solid waste management recommends an increase in material recycling and energy recovery, and only foresees landfill disposal for inert materials and residues from recovery and recycling. A correct waste management policy should be based on the principles of sustainable development, according to which our refuse is not simply regarded as something to eliminate but rather as a potential resource. This requires the creation of an integrated waste management plan that makes full use of all available technologies. In this context, eMergy analysis is applied to evaluate three different forms of waste treatment and construct an approach capable of assessing the whole strategy of waste management. The evaluation included how much investment is needed for each type of waste management and how much "utility" is extracted from wastes, through the use of two indicators: Environmental yield ratio (EYR) and Net eMergy. Our results show that landfill is the worst system in terms of eMergy costs and eMergy benefits. Composting is the most efficient system in recovering eMergy (highest EYR) from municipal solid waste (MSW) while incineration is capable of saving the greatest quantity of eMergy per gram of MSW (highest net eMergy). This analysis has made it possible to assess the sustainability and the efficiency of individual options but could also be used to assess a greater environmental strategy for waste management, considering a system that might include landfills, incineration, composting, etc.  相似文献   

5.
Municipal solid waste management strategies in Turkey   总被引:1,自引:0,他引:1  
Municipal solid waste (MSW) is a major environmental problem in Turkey, as in many developing countries. Problems associated with municipal solid waste are difficult to address, but efforts towards more efficient collection and transportation and environmentally acceptable waste disposal continue in Turkey. Although strict regulations on the management of solid waste are in place, primitive disposal methods such as open dumping and discharge into surface water have been used in various parts of Turkey. This study presents a brief history of the legislative trends in Turkey for MSW management. The study also presents the MSW responsibility and management structure together with the present situation of generation, composition, recycling, and treatment. The results show that approximately 25 million ton of MSW are generated annually in Turkey. About 77% of the population receives MSW services. In spite of efforts to change open dumping areas into sanitary landfills and to build modern recycling and composting facilities, Turkey still has over 2000 open dumps.  相似文献   

6.
Taiwan is the second most densely populated country in the world; its 22.604 million residents (2002) live in an area of 35,967 km2 (628 people/km2). Taiwan's economy has grown rapidly during the last 20 years, resulting in a corresponding increase in the amount of municipal solid waste (MSW). This study describes and evaluates the municipal solid waste management system in Taiwan. The study's results indicate that the amount of MSW began to decline after 1997, when the government enforced aggressive MSW management policies. By 2002, total MSW production had dropped by 27%, and the average daily per capita weight of MSW had fallen from 1.14 kg in 1997 to 0.81 kg in 2002. Summarizing the successful experience of MSW reduction in Taiwan, the most important factor was the government's combining of the MSW collection system with reduction/recycling programs. The second most important factor was the policy of extended producer responsibility, which laid a foundation of recycling by producers and retailers and promoted public recycling.  相似文献   

7.
An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).  相似文献   

8.
Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.  相似文献   

9.
As the fourth phase of the Three Gorges reservoir project commenced in 2008, the rate of water flow in the Yangtze River has obviously decelerated further downstream and water clarity within the storage facility has decreased. Meanwhile, the rate of urbanization in the region is adding to the amount of municipal solid waste (MSW) being generated by every day life. The composition of the waste is becoming more diversified and complicated, thereby presenting an increasing threat to the ecological environment and water resources of the Three Gorges region. This paper is a probe into MSW in terms of its characteristics as well as methods of storage, collection, transportation, recycling, treatment and disposal, the protection of environmental ecosystems. Municipal solid waste management (MSWM) is one of the major environmental problems in the Three Gorges region, and indeed the whole of China. Based on the analysis of the present situation of MSWM and its treatment/disposal, some methods of sorting, recycling, decomposing, incineration and reuse are described, sanitary landfill as the main disposal method in Chongqing city, incineration being the second. Sanitary landfill or dump was also used for MSW treatment in the Three Gorges region, and this paper also provides some suggestions for improving MSWM in the Three Gorges region.  相似文献   

10.
Municipal solid waste incinerator (MSWI) bottom ash was allowed to be disposed of with municipal solid waste (MSW) in landfill sites in the recently enacted standard of China. In this study, three sets of simulated landfill reactors, namely, conventional MSW landfill (CL), conventional MSWI bottom ash and MSW co-disposed landfill (CCL), and leachate recirculated MSWI bottom ash and MSW co-disposed landfill (RCL), were operated to investigate the environmental impact of the co-disposal. The effect of leachate recirculation on the migration of Cu and Zn in the co-disposed landfill was also presented. The results showed that the co-disposal of MSWI bottom ash with MSW would not enhance the leaching of Cu and Zn from landfill. However, the co-disposal increased the Cu and Zn contents of the refuse in the bottom layer of the landfill from 56.7 to 65.3 mg/kg and from 210 to 236 mg/kg, respectively. The recirculation of the leachate could further increase the Cu and Zn contents of the refuse in the bottom layer of the landfill to 72.9 and 441 mg/kg, respectively. Besides these observations, the results also showed that the co-disposed landfill with leachate recirculation could facilitate the stabilization of the landfill.  相似文献   

11.
Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000tonnes/day of MSW, which is projected to rise to 17,000-25,000tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW is collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system.  相似文献   

12.
Although some of the Gulf Co-operation Council (GCC) member states have placed recycling at the top of their waste management priorities, the low cost of landfill and the availability of land, usually old sand or gravel quarries, make recycling programs infeasible, uneconomical and unachievable. The only comprehensive form of recycling available within the GCC states is recycling of paper and cartons. The majority of the GCC states never set national or regional recycling targets. The cost of recycling in the GCC states region could be moderate to high depending on the collection system selected for the recycling program. Almost all of the cities within the GCC states use mechanised systems for daily collection of municipal solid waste (MSW). Therefore, the same daily collection system used for MSW might well be used for collection of recyclable materials, both on the same day and at the same time, or according to a different timetable. This paper provides strategies for developing an effective recycling marketing program and discusses regional co-ordination options.  相似文献   

13.
Japan's basic approach to municipal solid waste (MSW) is (1) waste reduction, (2) promotion of recycling, (3) volume reduction by intermediate treatment, and (4) environmentally sound final disposal. A brief history of legislative trends in waste management is given as background for current waste management and recycling activities. The material recovery rate for MSW collected by local municipalities was only 5.6% in 1996. More than half of MSW, on a volume basis, consists of containers and packages, while great amounts of landfill space are also taken up by bulky wastes such as electric appliances. Therefore, in order to promote recycling and decrease landfill waste, Japan is targeting containers, packages, and electric appliances. A law promoting separate collection and recycling of containers and packages (Packaging Waste Recycling Law) and a law requiring the recycling of specific home electric appliances into new products (Home Electric Appliance Recycling Law) were introduced in June 1995 and June 1998, respectively. These laws are in line with the OECD policy Extended Producer Responsibility (EPR). Received: September 16, 1998 / Accepted: March 10, 1999  相似文献   

14.
The degradation of organic compounds found in municipal solid waste (MSW) under the anaerobic landfill conditions produces gas and liquid emissions that can protract well into the landfill after-care period. The European Landfill Directives regulate the amount and nature of the organic compounds disposed into landfills. In South Africa and other developing countries, MSW is still landfilled without any kind of pre-treatment. This paper presents a pilot project of mechanical biological waste treatment (MBWT) in South Africa implemented at municipal level in the city of Durban using passively aerated open windrows. Based on case studies from Austria, England and South Africa, a waste minimisation model which can facilitate full-scale implementation of MBWT in developing countries is presented. MSW was treated in open windrows for 8 weeks. Composting temperature reached a maximum of 65 °C in less than 10 days. The results of eluate tests on waste samples from the windrows at the end of composting show a reduction of BOD5 and BOD5/COD ratios equal to 35.7% and 16.7%, respectively. The percent waste composition of the treated MSW was 28.3% putrescibles, 17.4% garden refuse, 13.3% plastic, 12.4% fabrics, 12% paper and other elements. The waste composition shows that more than 40% of un-treated organic material and also more than 40% non-biodegradable and recyclable materials are still landfilled without any form of biological treatment or resource recovery. A simple wet and dry waste collection model can promote recycling, treatment of biological waste before landfilling, resource recovery, labour intensive jobs and hence sustainable landfilling in the South African scenario as well as in similar developing countries.  相似文献   

15.
Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices.  相似文献   

16.
This paper focuses on the study of eleven environmental impact categories produced by several municipal solid waste management systems (scenarios) operating on a provincial scale in Southern Italy. In particular, the analysis takes into account 12 management scenarios with 16 management phases for each one. The only difference among ten of the scenarios (separated kerbside collection of all recyclables, glass excepted, composting of putrescibles, RDF pressed bales production and incineration, final landfilling) is the percentage of separated collection varying in the range of 35–80%, while the other two scenarios, for 80% of separate collection, consider different alternatives in the disposal of treatment residues (dry residue sorting and final landfilling or direct disposal in landfill). The potential impacts induced on the environmental components were analysed using the life cycle assessment (LCA) procedure called “WISARD” (Waste Integrated System Assessment for Recovery and Disposal). Paper recycling was the phase with the greatest influence on avoided impacts, while the collection logistics of dry residue was the phase with the greatest influence on produced impacts. For six impact categories (renewable and total energy use, water, suspended solids and oxydable matters index, eutrophication and hazardous waste production), for high percentages of separate collection a management system based on recovery and recycling but without incineration would be preferable.  相似文献   

17.
The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods clean have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested.  相似文献   

18.
With the development of science and technology, solid waste management has become a serious environmental problem for most communities all over the world. This paper presents a multi-objective optimization model for the management of municipal solid waste (MSW) via an uncertainty approach. In this model, the system cost of solid waste management and the environmental impact are considered as the main objectives, and some necessary constraints based on the characteristics of China are included; additionally, Pollution loss theory is applied to evaluate the environmental impact.This model is applied to the City of Fo Shan, China. Compared with the primary project of Fo Shan, which is provided by the government, the results of the optimization procedure show that the overall system cost could be reduced by $1–2.4/ton, i.e., $3.7 million/yr. The model presented in this paper was proven to be an effective response to the multi-objective solid waste management problem, and provides a new technique to optimize MSW management and operation. Why is the optimization result better? By analyzing the modelling with respect to function, constraints, and results, we conclude that the profit would be augmented due to the amount of the waste that would be treated by recycling technology, which would increase rapidly during the planning time; thus, the total system cost could be reduced accordingly.  相似文献   

19.
The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin’s MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.  相似文献   

20.
This article covers partial results for research which was carried out to determine the effectiveness of municipal solid waste (MSW) recycling in Bandung metropolitan urban areas. It focuses on the results of waste flow analysis as basic information in developing better MSW management systems, especially in applying the reduce, reuse, recycle (3Rs) concept. The dependence upon final disposal sites in MSW management and the difficulties in finding disposal sites have resulted in interest in the 3Rs concept. In this research, the determination of waste compositions and the potential of recycling were evaluated based on data from interviews with householders, members of the nonhousehold sector, and recycling actors and on measurement. The informal sector activities observed were mainly from handcart crews, mobile scavengers, transfer point scavengers, final disposal scavengers, waste traders, and recycling business people at several locations in Bandung and Cimahi cities. The estimated waste recycling and composting by stakeholders has not yet achieved 10% (wet weight) of the total waste generated. As in other major cities in developing countries, the informal sectors hold an important role in the recovery of usable materials from waste. However, inorganic waste recycling activities from this sector have not even reached 8% (wet weight) of the total waste generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号