首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈茜茜  陈秋兰  宋伟  陈猛  袁东星 《环境化学》2014,(12):2136-2143
在亚热带冬、夏两季室外自然光照和温度条件下,研究了环境浓度下乙草胺、丁草胺和异丙甲草胺在河水和海水基底中的非生物降解(水解+光解)行为,并结合室内实验研究了非生物降解的影响因素.室外实验结果表明,冬季(气温12.30—26.98℃,平均17.47℃)乙草胺、丁草胺和异丙甲草胺在河水中的非生物降解半衰期(t1/2)为64—131 d、水解t1/2为105—346 d、光解t1/2为159—410 d,海水中非生物降解t1/2为89—193 d、水解t1/2为77—277 d、光解t1/2为417—630 d;夏季(气温20.77—30.37℃,平均27.22℃)3种目标农药在河水中非生物降解t1/2为4—20 d、水解t1/2为7—54 d、光解t1/2为7—32 d,海水中非生物降解t1/2为10—50 d、水解t1/2为23—67 d、光解t1/2为17—192 d.目标农药在海水中的残留持久性远高于河水;超纯水条件下,光解在目标农药的非生物降解中占主导地位;河水中的光解速率快于海水.室内实验发现,硝酸盐促进了3种目标农药的水解,同时对乙草胺和丁草胺的光解也起到促进作用;p H升高促进了异丙甲草胺的水解和光解速率,但是抑制了丁草胺的水解和乙草胺、丁草胺的光解;腐殖质添加浓度为10 mg·L-1和20 mg·L-1时促进了3种目标农药的水解,但在浓度达30 mg·L-1时则抑制了乙草胺的水解及异丙甲草胺的光解.总体而言,3种目标农药在实际水环境中的降解半衰期均较长,其降解机理和毒性效应值得进一步研究.  相似文献   

2.
为了掌握三唑类杀菌剂在环境中的行为归趋,评价其在环境中的风险,采用室内模拟试验,对氟环唑、戊唑醇和粉唑醇3种三唑类杀菌剂在不同温度和p H值水体、不同类型土壤以及氙灯光照条件下的降解特性展开研究。结果表明:在4 000 lx、紫外强度25μW·cm-2的人工光源氙灯条件下,氟环唑、戊唑醇和粉唑醇的光解半衰期分别为0.68、2.35和9.30 h,氟环唑和戊唑醇属于易光解农药,粉唑醇为中等光解农药;在25℃,p H值为4.0、7.0和9.0条件下,氟环唑的水解半衰期分别为120、131和151 d,戊唑醇的水解半衰期分别为257、198和187 d,粉唑醇的水解半衰期分别为204、182和182 d,3种杀菌剂水解特性差异与水体p H值和农药本身结构相关;氟环唑、戊唑醇和粉唑醇在江西红壤、太湖水稻土和东北黑土中的降解半衰期分别为58.2~72.9、182~365和102~161 d,3种土壤中降解速率从大到小依次为东北黑土、太湖水稻土和江西红壤。3种农药在水体和土壤中的滞留期较长,建议关注其在环境中的污染影响,对其使用和残留状况进行跟踪监测。  相似文献   

3.
为明确环氟菌胺的水解动力学规律,采用室内模拟试验方法,探究了温度、p H值、表面活性剂和不同种类水体对环氟菌胺水解的影响。结果表明:随着温度的升高,环氟菌胺的水解速率加快;环氟菌胺在碱性条件下降解最快;十二烷基磺酸钠(sodium dodecyl sulfonate,SDS)抑制环氟菌胺的水解;腐植酸的浓度低于1 mg·L-1时促进环氟菌胺的水解,浓度高于1 mg·L-1时抑制环氟菌胺的水解;环氟菌胺在不同水体中的水解速率顺序为:海水>江水>河水,环氟菌胺在自然条件下的降解速率显著高于室内模拟条件。  相似文献   

4.
为明确叶菌唑的环境降解规律,采用室内模拟实验方法,研究了叶菌唑在不同条件下的光解和土壤降解特性.结果表明,在紫外灯照射下,不同p H时,叶菌唑在中性条件下的光解速率最快;环境物质二价铁离子、三价铁离子、硝酸根离子和亚硝酸根离子对叶菌唑的光解均具有抑制作用.叶菌唑在3种不同土壤中的降解顺序为南京黄棕壤东北黑土江西红壤,降解半衰期分别为35.9、51.7、60.3 d,属于中等降解农药;土壤含水量(20%—60%)越高,叶菌唑降解速率越快,当土壤含水量为饱和含水量的80%时,微生物生长将受到抑制,降解速率减慢;土壤中微生物和有机质能加快叶菌唑的降解,在微生物和有机质存在的条件下叶菌唑降解速率分别提高1.1倍和2.3倍.研究结果可为叶菌唑的合理使用和环境安全性评价提供科学依据.  相似文献   

5.
21种杀菌剂对家蚕的急性毒性与风险评价   总被引:5,自引:0,他引:5  
旨在为桑园及周围农田合理选择和使用农药提供科学依据,采用食下毒叶法测定了农业生产上常用的21种杀菌剂对家蚕的急性毒性,并进行了风险评价.急性毒性测定结果表明:20%苯醚甲环唑微乳剂、10%氟硅唑水乳剂、12.5%腈菌唑水乳剂、12.5%烯唑醇可湿性粉剂和70%嗯霉灵可湿性粉剂对家蚕的96 h-LC50值为46.5(41...  相似文献   

6.
三种丙烯菊酯系列产品的光解和水解稳定性   总被引:1,自引:0,他引:1  
研究了富右旋反式丙烯菊酯、Es-生物丙烯菊酯、右旋丙烯菊酯 3种丙烯菊酯系列农药在水体中的光解以及不同温度、pH条件水体中的水解作用。结果表明 ,在 5 0 0W氙灯下 ,3种菊酯类农药在水溶液中的光解均呈一级动力学反应 ,3种农药的光解半衰期分别为 1.84 ,1.37和 1.5 1h ;在 2 5℃的酸性水溶液中 ,3种农药的水解速率很慢 ,半衰期均大于 16 2d ;水温的升高与碱性的增强均能加速水解过程。在 5 0℃的碱性水溶液中 ,3种农药的光解半衰期分别为 0 .2 1,0 .2 2和 0 .18d。虽然 3种丙烯菊酯异构体含量不同 ,但其光解、水解特性没有显著差别。本文对有关水解机理也作了初步分析。  相似文献   

7.
水中速灭威农药非生物降解的研究   总被引:2,自引:0,他引:2  
本文报导了从水解、光解角度对水中速灭威进行非生物降解的初步研究。用气相色谱技术测定了不同浓度氢氧化钠溶液,不同pH,不同温度和不同水质等环境因素下速灭威的降解速率和半衰期。结果表明,它在碱性介质中极易水解;在pH<6的弱酸牲溶液中趋向稳定;水解速度随温度升高而加快,反应温度系数为2—3;速灭威在海水中的降解速度比淡水缓慢,在表面水中的光解速率与溶液的pH及溶剂种类有关。试验观察到紫外光引起速灭威紫外吸收光谱的明显变化,鉴定了降解的主要产物是间甲酚,从而证实降解引起氨基甲酸酯酯键断裂。此外,薄层分离了四种微量的未能鉴定的降解产物,酶抑制实验表明这些未知物均能抑制胆碱酯酶。通过红外光谱初步探讨了其中一种光解产物的结构。  相似文献   

8.
采用室内模拟试验,系统研究生物烯丙菊酯、反式氯氰菊酯、多杀霉素和甲氨基阿维菌素苯甲酸盐4种非农用农药的水解、光解和吸附特性,并采用EQC模型模拟4种非农用农药在多介质环境中的归宿和迁移通量。结果表明,在25℃,pH值分别为4、7和9条件下,生物烯丙菊酯的水解半衰期分别为77.00、57.80和4.41 d,反式氯氰菊酯的水解半衰期分别为180、40.80和5.64 d,多杀霉素的水解半衰期分别为180、180和6.03 d,甲氨基阿维菌素苯甲酸盐的水解半衰期分别为180、180和46.20 d;温度越高,pH值越大,4种非农用农药水解速率就越快。氙灯照射下,反式氯氰菊酯、生物烯丙菊酯、甲氨基阿维菌素苯甲酸盐和多杀霉素的光解半衰期分别为0.100、0.738、1.720和6.130 h,其分子结构和理化性质是重要影响因素。4种非农用农药在江西红壤、太湖水稻土和东北黑土中的吸附规律均能较好地用Freundlich方程进行描述,土壤pH值、有机质含量、阳离子交换量和水溶解度是影响其在土壤中迁移的主要因素。根据EQC模型评估结果,稳态平衡非流动条件下土壤相是反式氯氰菊酯、多杀霉素和甲氨基阿维菌素苯甲酸盐最大的贮存库,残留量超过95.0%;生物烯丙菊酯在土壤相、水体相和大气相中的质量分数分别为70.1%、18.2%和10.8%。  相似文献   

9.
采用试管药膜法测定了12种杀菌剂制剂对半闭弯尾姬蜂成蜂的急性接触毒性,结合安全性系数评价了供试药剂对半闭弯尾姬蜂的安全性。急性毒性测定结果表明,氟硅唑和啶菌噁唑对半闭弯尾姬蜂成蜂的接触毒性最高,LC50值分别为220.022和223.115 mg·L-1;其次为多抗霉素、丙森锌和戊唑醇,LC50值分别为436.496、472.358和638.638 mg·L-1;其余7种杀菌剂制剂嘧霉胺、啶酰菌胺、苯醚甲环唑、多菌灵、嘧菌酯、嘧菌环胺和异菌脲对半闭弯尾姬蜂成蜂的触杀毒性都较低,LC50值均大于1 000 mg·L-1。安全性评价结果表明,丙森锌和啶菌噁唑对半闭弯尾姬蜂成蜂具有高风险性,安全系数分别为0.16和0.42;嘧霉胺、多抗霉素、氟硅唑和戊唑醇为中等风险性,安全系数分别为1.43、1.56、2.20和3.23;其余6种杀菌剂制剂啶酰菌胺、苯醚甲环唑、多菌灵、嘧菌酯、嘧菌环胺和异菌脲对半闭弯尾姬蜂表现为低风险性,安全系数均大于5。结果显示:甾醇脱甲基抑制剂氟硅唑、戊唑醇和啶菌噁唑以及苯胺基嘧啶类杀菌剂嘧霉胺、有机硫杀菌剂丙森锌和抗菌素多抗霉素对半闭弯尾姬蜂成蜂具有急性毒性风险,在有害生物综合治理中应谨慎使用,特别是啶菌噁唑和丙森锌,以免对半闭弯尾姬蜂造成不良影响和危害。  相似文献   

10.
土壤有机碳对磺胺甲噁唑吸附的影响   总被引:2,自引:0,他引:2  
张迪  吴敏  李浩  刘佳  汪浩  彭红波  宁平  潘波 《环境化学》2012,31(8):1238-1243
以从云南元阳采集的1个水稻土和1个非耕作土,按颗粒大小分组作为模型吸附剂,探讨磺胺甲噁唑在土壤上的吸附行为与土壤有机质的关系.结果表明,梯田水稻土对磺胺甲噁唑的吸附(Kd:1.33—5.08)明显高于非耕作土(Kd:0.27—1.53).吸附强度与土壤C含量和O+N+S含量呈正相关,相关系数分别为0.953、0.917和0.769、0.809,说明土壤有机碳可能控制了磺胺甲噁唑的吸附,以有机碳为代表的憎水性吸附点位对吸附有较高的影响,憎水性作用为主导机理.  相似文献   

11.
12种常见农药对海胆胚胎发育的毒性影响   总被引:2,自引:1,他引:1  
为了研究低浓度下农药对海胆胚胎的毒性影响,以及正辛醇/水分配系数(LogP)与致死率的关系,实验研究了12种常见农药(阿维菌素、硫丹、除虫脲、甲氰菊酯、三环唑、使它隆、抑霉唑、戊唑醇、磺胺吡啶、磺胺甲噁唑、磺胺二甲嘧啶和磺胺嘧啶)在低浓度(0.01mg.L-1)下对光棘球海胆(Strongylocentrotus nudus)胚胎发育的急性毒性影响.结果显示:1)实验浓度下,磺胺吡啶、三环唑、磺胺嘧啶和抑霉唑分别对受精膜举起期、2细胞期、上浮囊胚期和棱柱幼体期相对致死率最高,分别达到3.70%、6.19%、5.84%和6.07%.2)农药对海胆胚胎发育存在低剂量有毒物质的刺激作用(Hormesis现象).3)在海胆胚胎各发育期,LogP与相对致死率呈现一定的负相关性,即随着LogP的增加,各农药对海胆胚胎的相对致死率逐渐下降.  相似文献   

12.
啶虫脒对蜜蜂急性毒性较低,且允许在作物花期施用,而杀菌剂也是蜜源植物花期常用药剂。本文采用点滴法和摄入法测定了10种常用杀菌剂对啶虫脒中华蜜蜂毒性的潜在增效作用。结果表明,点滴田间实际暴露剂量的杀菌剂使啶虫脒对中华蜜蜂的毒性不同程度的增加。点滴杀菌剂和啶虫脒24 h、48 h后,咪鲜胺、丙环唑、腈菌唑、戊唑醇、苯醚甲环唑、嘧菌酯、己唑醇、吡唑醚菌酯、三唑酮、氟硅唑使啶虫脒毒性分别增加14.02、10.74、8.50、7.92、4.77、4.28、4.19、4.07、2.74、2.67倍和8.01、10.14、4.80、7.09、2.66、2.56、3.62、2.69、2.24、1.49倍。摄入田间实际暴露剂量的杀菌剂和啶虫脒混剂24 h、48 h后,啶虫脒对中华蜜蜂的毒性增加。其中,丙环唑、氟硅唑、苯醚甲环唑、嘧菌酯、咪鲜胺使啶虫脒的毒性分别增加3.62、2.46、2.10、1.98、1.56倍和2.07、2.81、2.20、2.58、2.23倍。因此蜜源植物花期应避免丙环唑、咪鲜胺、戊唑醇、腈菌唑与啶虫脒先后喷施或混合喷施,慎用己唑醇等其他6种杀菌剂,以防啶虫脒残留导致中华蜜蜂采集蜂中毒。  相似文献   

13.
以东莞市2011年夏季不同区域的大气颗粒物为研究对象,定性定量分析了其中多环芳烃(PAHs)及硝基多环芳烃(NPAHs)的浓度、组成.采用特征比值法分析了PAHs及NPAHs的来源,并通过PEFs毒性评价法评价了颗粒物中多环芳烃及硝基多环芳烃的BaP等效毒性,估算出个体致癌指数.结果表明东莞市颗粒物上16种多环芳烃总含量在12.60—193.95 ng·m-3范围内,6种硝基多环芳烃的总含量在5.88—62.79 ng·m-3,隧道环境中多环芳烃及硝基多环芳烃的浓度最高.除隧道环境中颗粒物的等效毒性及个体致癌指数超标外,东莞市颗粒物上PAHs及NPAHs对人体均不构成严重威胁.  相似文献   

14.
毒草胺在环境中的降解特性研究   总被引:1,自引:0,他引:1  
毒草胺是一种被广泛应用的农药,其在环境中的降解特性备受关注。文章采用室内模拟试验方法,研究了毒草胺的光解、水解及土壤降解特性。研究结果表明,毒草胺在光强为2 370l x、紫外强度为13.5μW.cm-2的人工光源氙灯条件下,光解半衰期为2.5 h,较易光解。25℃时在pH值为5.0、7.0和9.0的缓冲水溶液中,降解半衰期分别为147.5、173.3和239.0 d;50℃时半衰期分别为15.2、27.0和42.3 d,结果显示温度对其降解速率影响较大,温度增加,水解速率明显加快,水解半衰期降低约6~10倍。该药在江西红壤中降解半衰期为46.5 d,在太湖水稻土、东北黑土中降解半衰期分别为6.4和7.9 d,比较容易降解,主要为微生物降解。结果表明毒草胺在水体中具有一定的稳定性,尤其在避光条件下难以降解。但在土壤中,比较容易被微生物降解。  相似文献   

15.
在湖南长沙进行田间试验,研究10%精(口恶)唑禾草灵·氰氟草酯乳油(商品名:百除)在稻田水、土壤及水稻植株中的消解与残留动态.结果表明:百除中2种有效成分精(口恶)唑禾草灵和氰氟草酯在稻田环境中的消解均符合一级动力学方程.精(口恶)唑禾草灵在稻田水、土壤及水稻植株中的半衰期分别为3.51、1.63和2.14 d,氰氟草酯的半衰期分别为3.18、1.61和2.05 d.在推荐使用剂量下,收获稻谷中精(口恶)唑禾草灵和氰氟草酯的残留量低于美国、韩国或日本残留限量标准,因此本试验条件下收获的稻谷食用是安全的.  相似文献   

16.
采用室内模拟试验研究丁虫腈在水体中的光解、水解及其在3种不同类型土壤中的降解特性。结果表明,丁虫腈在酸性和中性条件下比较稳定,不易水解,而在碱性条件下水解较快,在50℃、pH值为9.0的缓冲溶液中降解半衰期为26.7d。通过对水解产物的鉴定,推断丁虫腈的水解机理为碱催化水解。在[光]照度为2500lx、紫外强度为25I.LW·cm-2的人工光源氙灯条件下,丁虫腈的降解半衰期为1.5h,主要降解产物为氟虫腈。丁虫腈在太湖水稻土、江西红壤和陕西潮土中培养180d后均未发生明显降解,表明该农药在土壤中较难降解。  相似文献   

17.
多环芳烃(PAHs)在环境中的光降解动力学受环境介质吸光组分的影响.为揭示介质吸光组分对PAHs光降解影响的内在机制,以吸光很弱的甲醇和吸光较强的丙酮和二甲基亚砜(DMSO)为模拟环境介质,考察不同吸光性溶剂介质对3种PAHs(菲、芘和苯并[a]芘)光解的影响;并采用密度泛函理论(DFT)计算,分析了溶剂分子光敏化能量/电子转移反应对PAHs光解的影响机制.结果表明,激发态的丙酮分子抑制了菲和芘的光解,而加快了苯并[a]芘的光解;激发态的DMSO分子抑制了菲的光解,促进了芘和苯并[a]芘的光解.过滤掉DMSO所吸收的部分光谱频段后,PAHs在DMSO中的光解速率与甲醇中的接近.DFT计算表明,激发态的丙酮或DMSO主要作为电子受体与PAHs发生光敏化电子转移反应,是影响PAHs光解的内在原因.  相似文献   

18.
黄浦江表层沉积物中多环芳烃的分布特征及来源   总被引:19,自引:1,他引:18  
利用GC/MS对黄浦江8个断面表层沉积物中的16种多环芳烃(PAHs)进行了分析.沉积物中PAHs总量为0.244—2.805μg·g-1,从上游到下游呈升高趋势,工业污染和城市活动是黄浦江水环境中多环芳烃的重要来源.苏州河对黄浦江下游水环境中的多环芳烃具有较大的输入贡献.特征化合物指数分析表明,黄浦江沉积物中的多环芳烃主要来自于化石燃料的不完全燃烧,中下游显示一定的混合来源特征.相关性分析表明,总有机碳是影响沉积物中多环芳烃分布的重要因素.  相似文献   

19.
农药阿维菌素在水中的光解动态及机理   总被引:3,自引:0,他引:3  
为了科学评价农药阿维菌素的环境安全性,采用室内模拟方法研究了其在水环境中的光解动态,考察了波长、光强和添加物质等对阿维菌素光降解的影响,进而利用LC/MS鉴定了其主要降解产物,并对降解机理进行了初步探讨.结果表明:紫外灯辐射波长对阿维菌素的光解速率影响较大,波长越短,越有利于阿维菌素的光降解;模拟太阳光强度越大,阿维菌素的光解速率越快;1%H_2O_2、0.1%TiO_2和10%丙酮作为添加物质都能加快阿维菌素的光解进程;通过分析阿维菌素光解产物的TIC图和质谱图,可能主要有两种代谢产物,分析了其降解途径及机理.  相似文献   

20.
应用固相萃取(SPE)及超高效液相色谱-串联质谱(UPLC-MS/MS)技术,建立了快速提取测定水环境中4种四环素类抗生素(四环素、土霉素、强力霉素、金霉素)和6种磺胺类抗生素(磺胺嘧啶、磺胺甲基嘧啶、磺胺二甲基嘧啶、磺胺二甲氧嘧啶、磺胺甲唑和磺胺噻唑)的方法.水样经过HLB小柱浓缩萃取之后以C18柱为分析柱,乙腈和0.1%甲酸水溶液为流动相,采用UPLC-MS/MS多反应监测(MRM)离子模式进行分析.纯水和城市生活污水中抗生素物质检出限分别为0.015—0.12 ng·L-1、0.03—0.09 ng·L-1,平均回收率分别为88.7%—113.5%、73.7%—94.5%,相对标准偏差均在2.6%—10.6%之间(n=8).方法操作简单、定性定量准确,检出限低,能够满足测定各类水环境中四环素类和磺胺类抗生素痕量残留的分析要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号