首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
Electric utilities considering atmospheric fluidized-bed combustion (AFBC) as an economic way to reduce SO2 and NOx emissions at coal-fired power plants must evaluate the impact AFBC will have on existing or planned plant systems and components. Because fly ash in AFBC units can have characteristics significantly different from that generated in pulverized-coal-fired boilers, a particular concern in this regard is the performance of the plant's particulate control equipment.  相似文献   

2.
The U.S. EPA’s Air and Energy Engineering Research Laboratory is responsible for assessing control technology performance and costs under the National Acid Precipitation Assessment Program. A major part of this assessment involves developing site-specific estimates of the performance and costs of retrofitting SO2 and NOx control technologies for the top 200 SO2- emitting (1980) coal-fired power plants in the 31-state eastern region. This effort includes detailed evaluation of a small number of plants (30 or less) representing a cross-section of the top 200 population. In cooperation with the states of Ohio and Kentucky (in conjunction with the U.S. EPA’s State Acid Rain Grant Program), efforts were undertaken to visit and conduct detailed evaluation of 12 coal-fired plants—five in Ohio, seven in Kentucky and the Tennessee Valley Authority System. A variety of commercial and advanced SO2 and NOx control technologies—including precombustion, combustion (in-furnace), and postcombustion (flue gas cleanup) technologies—were applied to each plant through conceptual designs. Retrofit factors (applied to the capital cost of a new pollution control system), cost “adders” (e.g., movement of existing equipment), and costs were developed for applying the control technologies to the boilers of each plant. Results of these and subsequent efforts will be valuable in evaluations of acid deposition control strategies by federal and state agencies and by electric utilities.  相似文献   

3.
The 1991 SO2 Control Symposium was held December 3-6, 1991, in Washington, D.C. The symposium, jointly sponsored by the Electric Power Research Institute (EPRI), the U.S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE), focused attention on recent improvements in conventional sulfur dioxide (SO2) control technologies, emerging processes, and strategies for complying with the Clean Air Act Amendments of 1990. Its purpose was to provide a forum for the exchange of technical and regulatory information on SO2 control technology. Over 800 representatives of 20 countries from government, academia, flue gas desulfurization (FGD) process suppliers, equipment manufacturers, engineering firms, and utilities attended. In all, 50 U.S. utilities and 10 utilities in other countries were represented. In 11 technical sessions, a diverse group of speakers presented 111 technical papers on development, operation, and commercialization of wet and dry FGD, Clean Coal Technologies, and combined sulfur dioxide/nitrogen oxides (SO2/NOx processes.  相似文献   

4.
Abstract

To test the effectiveness of California’s vehicle inspection/ maintenance (I/M) program, exclusive of vehicle-owner intervention, a fleet of more than 1,100 vehicles that previously had failed California’s Smog Check test were sent to randomly selected Smog Check stations in the Los Angeles area for covert inspections and repairs. The two-speed idle test was used for repairs. For those vehicles that were repaired at the first inspection, their FTP emission reductions were 25%, 14%, and 11% for hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), respectively, although emissions testing for NOx was not performed at the Smog Check stations. Idle HC and CO emissions increased for 35% and 43% of the vehicles, respectively, after repairs. This data set shows that most vehicles that fail the Smog Check inspection are only marginal emitters, with 61% and 44% of the total potential for HC and CO emission reductions, respectively, coming from only 10% of the vehicles that currently fail the inspection. When the vehicles were rank-ordered by idle emissions from dirtiest to cleanest, emission reduction costs for the highest-emitting 10% of the fleet averaged $l,100/ton and $250/ton for HC and CO, respectively, attributing all the costs to each pollutant exclusively. For the remaining vehicles, costs increased dramatically.  相似文献   

5.
Abstract

Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorp-tion capacities (~100 μg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.  相似文献   

6.
Under the 11th Five Year Plan (FYP, 2006–2010) for national environmental protection by the Chinese government, the overarching goal for sulfur dioxide (SO2) controls is to achieve a total national emissions level of SO2 in 2010 10% lower than the level in 2005. A similar nitrogen oxides (NOx) emissions control plan is currently under development and could be enforced during the 12th FYP (2011–2015). In this study, the U.S. Environmental Protection Agency (U.S.EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) modeling system was applied to assess the air quality improvement that would result from the targeted SO2 and NOx emission controls in China. Four emission scenarios — the base year 2005, the 2010 Business-As-Usual (BAU) scenario, the 2010 SO2 control scenario, and the 2010 NOx control scenario—were constructed and simulated to assess the air quality change from the national control plan. The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) was applied to generate the meteorological fields for the CMAQ simulations. In this Part I paper, the model performance for the simulated meteorology was evaluated against observations for the base case in terms of temperature, wind speed, wind direction, and precipitation. It is shown that MM5 model gives an overall good performance for these meteorological variables. The generated meteorological fields are acceptable for using in the CMAQ modeling.  相似文献   

7.
Results from a detailed analysis of sulfur dioxide (SO2) reductions achievable through “deep” physical coal cleaning (PCC) at 20 coal-fired power plants in the Ohio-Indiana-Illinois region are presented here. These plants all have capacities larger than 500 MWe, are currently without any flue gas desulfurization (FGD) systems, and burn coal of greater than l%sulfur content (in 1980). Their aggregate emissions of 2.4 million tons of SO2 per year represents 55% of the SO2 inventory for these states. The principal coal supplies for each power plant were identified and characterized as to coal seam and county of origin, so that published coal-washability data could be matched to each supplier. The SO2 reductions that would result from deep cleaning each coal (Level 4) were calculated using an Argonne computer model that assumes a weight recovery of 80%. Percentage reductions in sulfur content ranged from zero to 52%, with a mean value of 29%, and costs ranged from a low of $364/ton SO2 removed to over $2000/ton SO2 removed. Because coal suppliers to these power plants employ some voluntary coal cleaning, the anticipated emissions reduction from current levels should be near 20%. Costs then were estimated for FGD systems designed to remove the same amount of SO2 as was achieved by PCC through the use of partial scrubbing with bypass of the remaining flue gas. On this basis, PCC was more cost-effective than FGD for about 50% of the plants studied and had comparable costs for another 25% of the plants. Possible governmental actions to either encourage or mandate coal cleaning were identified and evaluated  相似文献   

8.
The pace and direction of electrostatic precipitator (ESP) technology evolution in the United States will be governed by two key forces. The first is new clean air legislation passed by the U.S. Congress and signed by President Bush on November 15,1990. This law requires electric utilities to further reduce SO2 and NOx emissions, which may impact particulate controls. In addition, very fine (< 10 micron) participates and potentially toxic trace emissions from utility power plants may be regulated. The second major factor is the expected upsurge in new plant construction beginning in the late 1990s. Together, these forces should define the performance requirements and market for new ESPs.

This paper identifies and briefly describes technologies that the Electric Power Research Institute (EPRI) is developing to help U.S. utilities meet these challenges cost-effectively. Among the technologies addressed are: advanced digital voltage controls, flue gas conditioning, intermittent energization, temperature-controlledprecharging (i.e., two-stage ESP), wide plate spacing, positive energization of corona electrodes for hot-side ESPs, and integration of conventional ESPs with pulse-jet baghouses.  相似文献   

9.
A new probabilistic modeling environment is described which allows the explicit and quantitative representation of the uncertainties inherent in new environmental control processes for SO2 and NOx removal. Stochastic analyses provide additional insights into the uncertainties in process performance and cost not possible with conventional deterministic or sensitivity analysis. Applications of the probabilistic modeling framework are illustrated via an analysis of the performance and cost of the fluidized bed copper oxide process, an advanced technology for the control of SO2 and NOx emissions from coal-fired power plants. An engineering model of a conceptual commercial-scale system provides the basis for the analysis. The model also captures interactions between the power plant, the SO2/NOx removal process, and other components of the emission control system. Results of the analysis address payoffs from process design improvements; the dependence of system cost on process design conditions and the availability of byproduct markets; and the likelihood that the advanced process will yield cost savings relative to conventional technology. The implications of case study results for research planning and comparisons with alternative systems also are briefly discussed.  相似文献   

10.
Sodium hypochlorite (NaClO) has been widely used as a chemical additive for enhancing nitrogen oxide (NOx; NO + NO2), sulfur dioxide (SO2), and mercury (Hg0) removals in a wet scrubber. However, they are each uniquely dependent on NaClO(aq) pH, hence making the simultaneous control difficult. In order to overcome this weakness, we sprayed low liquid-to-gas (L/G) ratio (0.1 L/Nm3) of NaClO(aq) to vaporize quickly at 165 °C. Results have shown that the maximized NOx, SO2, and Hg0 removals can be achieved at the pH range between 4.0 and 6.0. When NOx and Hg0 coexist with SO2, in addition, their removals are significantly enhanced by reactions with solid and gaseous by-products such as NaClO(s), NaClO2(s), OClO, ClO, and Cl species, originated from the reaction between SO2 and NaClO(aq). We have also demonstrated the feasibility of this approach in the real flue gases of a combustion plant and observed 50%, 80%, and 60% of NOx, SO2, and Hg0 removals, respectively. These findings led us to conclude that the spray of NaClO(aq) at a relatively high temperature at which the sprayed solution can vaporize quickly makes the simultaneous control of NOx, SO2, and Hg0 possible.

Implications: The simple spray of NaClO(aq) at temperatures above 165 °C can cause the simultaneous removal of gaseous NOx, SO2, and Hg0 by its quick vaporization. Their maximized removals are achieved at the pH range between 4.0 and 6.0. NOx and Hg0 removals are also enhanced by gaseous and solid intermediate products generated from the reaction of SO2 with NaClO(aq). The feasibility of this approach has been demonstrated in the real flue gases of a combustion plant.  相似文献   


11.
The emissions of exhaust gases (NO x , SO2, VOCs, and CO2) and particles (e.g., PM) from ships traversing Busan Port in Korea were estimated over three different years (the years 2006, 2008, and 2009). This analysis was performed according to the ship operational modes (“at sea,” “maneuvering,” and “in port”) and ship types based on an activity-based method. The ship emissions for current (base year 2009) and future scenarios (years 2020 and 2050) were also compared. The annual emissions of SO2, VOCs, PM, and CO2 were highest (9.6?×?103, 374, 1.2?×?103, and 5.6?×?105 ton year?1, respectively) in 2008. In contrast, the annual NO x emissions were highest (11.7?×?103 ton year?1) in 2006 due mainly to the high NO x emission factor. The emissions of air pollutants for each ship operational mode differed considerably, with the largest emission observed in “in port” mode. In addition, the largest fraction (approximately 45–67 %) of the emissions of all air pollutants during the study period was emitted from container ships. The future ship emissions of most pollutants (except for SO2 and PM) in 2020 and 2050 are estimated to be 1.4–1.8 and 4.7–6.1 times higher than those in 2009 (base year), respectively.  相似文献   

12.
An analysis of air quality data from 1970-1975 in the Los Angeles (LA) Basin has been made with emphasis on factors relevant to high hourly NO2 concentrations, (NO2). Detailed analysis of CO and SO2 air quality and the (NO x )/(CO) and (CO)/(SO2) ratios reveals that high (NO2) result mainly from vehicular sources; contributions from stationary sources to these high (NO2) of greater than 10% occur rarely. Meteorological conditions (very low early-morning inversion base height and low wind speed) favoring the formation of high (NO2) restrict the impact of elevated point NO x sources on the ground level (NO2) during the early to mid-morning hours. The overnight leftover NO x during high NO2 days is shown to originate largely from local sources near the monitoring sites. A regression analysis using NO2, NO x and HC data from downtown LA shows that a 50% reduction in (NO x ) reduces high (NO2) by 40-45%; a 50% reduction in (HC) reduces high (NO2) by 5-10%. The present analysis supports assumptions used in an earlier generalized rollback model that related NO x emissions to high 1-h average (NO2) observed at downtown LA.  相似文献   

13.
ABSTRACT

At conditions typical of a bag filter exposed to a coal-fired flue gas that has been adiabatically cooled with water, calcium hydroxide and calcium silicate solids were exposed to a dilute, humidified gas stream of nitrogen dioxide (NO2) and sulfur dioxide (SO2) in a packed-bed reactor. A prior study found that NO2 reacted readily with surface water of alkaline and non-alkaline solids to produce nitrate, nitrite, and nitric oxide (NO). With SO2 present in the gas stream, NO2 also reacted with S(IV), a product of SO2 removal, on the exterior of an alkaline solid. The oxidation of S(IV) to S(VI) by oxygen reduced the availability of S(IV) and lowered removal of NO2. Subsequent acidification of the sorbent by the removal of NO2 and SO2 facilitated the production of NO. However, the conversion of nitrous acid to sulfur-nitrogen compounds reduced NO production and enhanced SO2 removal. A reactor model based on empirical and semi-empirical rate expressions predicted rates of SO2 removal, NO2 removal, and NO production by calcium silicate solids. Rate expressions from the reactor model were inserted into a second program, which predicted the removal of SO2 and NOx by a continuous process, such as the collection of alkaline solids in a baghouse. The continuous process model, depending upon inlet conditions, predicted 30-40% removal for NO and 50-90% removal for SO2. These x 2 results are relevant to dry scrubbing technology for combined SO2 and NOx removal that first oxidizes NO to NO2 by the addition of methanol into the flue duct.  相似文献   

14.
ABSTRACT

This paper presents a technique for the complete, simultaneous decomposition of CO2, SO2, and NOx, as well as the simultaneous removal of fly ash by ultra-high voltage pulse activation. Ultra-high voltage narrow pulse is used to make the gases in the reactor become active molecules, which are then dissociated into nonpoisonous gas molecules and solid particles under the control of a directional reaction model. By using a sufficient charge and a strong electric field, the fly ash can be removed. It becomes the carrier of C and S, and its efficiency is 99.5%. Owing to the action of catalyst B (using Ni as the mother's body), the activation energy of CO2, SO2, and NOx gases is reduced in great magnitude, and their removal efficiency can reach 75~90% at normal pressure and 180 °C.  相似文献   

15.
The Commerce Technical Advisory Board (CTAB) Panel on Sulfur Oxide mission Control Technology was established in the spring of_1975 by the Secretary of Commerce in response to the urgent need for the use of coal to meet the Nation’s energy requirements, while maintaining the SO2 emission standards resulting from the Clean Air Act of 1970.

The Panel’s 20 members and 11 consultants, drawn broadly from industry, government, and academia are highly qualified in the diverse fields pertinent to SOx control technologies. They committed themselves to make an objective analysis of how soon, at what cost, and with what trade-offs commercially available SO2 continuous emissions controls can be installed, with arrangements for waste disposal, in all coal-fifed electricity generating plants in the populous Northeastern quadrant of the United States.

In its final report, submitted on September 10, 1975 to Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology, U. S.Department of Commerce, and Chairman of the Commerce Technical Advisory Board, the Panel concludes that installation and operation of continuous SOx emission controls on all Northeastern coal-fired electricity generating plants cannot be met until the early 1980’s, and then only with a maximum effort beginning immediately. Specific site and market constraints will determine the most economical and practical control technology for any given plant. The Panel believes that coal beneficiation, alone where it meets standards, or combined with lime/limestone flue gas desulfurization, often represents the lowest cost control technique.  相似文献   

16.
Abstract

Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO2 emissions declined by 60% to 340,000 short tons (t) and total NOx emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NOx emissions, and improvements in kraft recovery furnace operations.  相似文献   

17.
The existing and emerging international and European policy framework for the reduction of ship exhaust emissions dictates the need to produce reliable national, regional and global inventories in order to monitor emission trends and consequently provide the necessary support for future policy making. Furthermore, the inventories of ship exhaust emissions constitute the basis upon which their external costs are estimated in an attempt to highlight the economic burden they impose upon the society and facilitate the cost–benefit analysis of the proposed emission abatement technologies, operational measures and market-based instruments prior to their implementation.The case of Greece is of particular interest mainly because the dense ship traffic within the Greek seas directly imposes the impact of its exhaust emission pollutants (NOx, SO2 and PM) upon the highly populated, physically sensitive and culturally precious Greek coastline, as well as upon the land and seas of Greece in general, whereas the contribution of Greece in the global CO2 inventory at a time of climatic change awareness cannot be ignored. In this context, this paper presents the contribution of Greece in ship exhaust emissions of CO2, NOx, SO2 and PM from domestic and international shipping over the last 25 years (1984–2008), utilizing the fuel-based (fuel sales) emission methodology. Furthermore, the ship exhaust emissions generated within the Greek seas and their externalities are estimated for the year 2008, through utilizing the fuel-based (fuel sales) approach for domestic shipping and the activity-based (ship traffic) approach for international shipping.On this basis, it was found that during the 1984 to 2008 period the fuel-based (fuel sales) ship emission inventory for Greece increased at an average annual rate of 2.85%. In 2008, the CO2, NOx, SO2 and PM emissions reached 12.9 million tons (of which 12.4 million tons of CO2) and their externalities were found to be around 3.1 billion euro. With regard to shipping within the Greek seas, the utilization of the fuel-based (fuel sales) analysis for domestic shipping and the activity-based (ship traffic) analysis for international shipping shows that the ship-generated emissions reached 7.4 million tons (of which 7 million tons of CO2) and their externalities were estimated at 2.95 billion euro. Finally, the internalization of external costs for domestic shipping was found to produce an increase of 12.96 and 2.71 euro per passenger and transported ton, respectively.  相似文献   

18.
This study addresses the exhaust emissions of CO2, NOx, SOx, CO, and PM2.5 originated from Baltic Sea shipping in 2006–2009. Numerical results have been computed using the Ship Traffic Emissions Assessment Model. This model is based on the messages of the automatic identification system (AIS), which enable the positioning of ships with a high spatial resolution. The NOx emissions in 2009 were approximately 7 % higher than in 2006, despite the economic recession. However, the SOx emissions in 2009 were approximately 14 % lower, when compared to those in 2006, mainly caused by the fuel requirements of the SOx emission control area (SECA) which became effective in May 2006, but affected also by changes in ship activity. Results are presented on the differential geographic distribution of shipping emissions before (Jan–April 2006) and after (Jan–April 2009) the SECA regulations. The predicted NOx emissions in 2009 substantially exceeded the emissions in 2006 along major ship routes and at numerous harbors, mostly due to the continuous increase in the number of small vessels that use AIS transmitters. Although the SOx emissions have been reduced in 2009 in most major ship routes, these have increased in the vicinity of some harbors and on some densely trafficked routes. A seasonal variation of emissions is also presented, as well as the distribution of emissions in terms of vessel flag state, type, and weight.  相似文献   

19.
Two indicator pollutants, carbon monoxide (CO) for mobile source influence and sulfur dioxide (SO2) for stationary source influence, were used to estimate source-type contributions to ambient NO2 levels in a base year and to predict NO2 concentrations in a future year. For a specific source-receptor pair, the so-called influence coefficient of each of three source categories (mobile sources, power plants, and other stationary sources) was determined empirically from concurrent measurements of CO and SO2 concentrations at the receptor site and CO and SO2 emissions from each source category in the source area. Those coefficients, which are considered time invariant, were used in conjunction with the base year and future year NO x emission values to estimate source-type contribution to ambient NO2 levels at seven study sites selected from the Greater Los Angeles area for both the base year period, 1974 through 1976, and the future goal year of 1987 in which the air quality standards for NO2 are to be attained. The estimated NO2 air quality at the seven sites is found to meet the national annual standard of 5 pphm and over 99.9% of total hours, the California 1-hr NO2 standard of 25 pphm in 1987. The estimated power plant contributions to ambient NO2 levels are found to be considerably smaller than those to total NO x emissions in the area. Providing that reasonably complete air quality and emissions data are available, the present analysis method may prove to be a useful tool in evaluating source contributions to both short-term peak and long-term average NO2 concentrations for use in control strategy development.  相似文献   

20.
The anthropogenic emissions of SO2 and NOx for 25 Asian countries east of Afghanistan and Pakistan have been calculated for 1975, 1980, 1985, 1986 and 1987 based on fuel consumption, sulfur content in fuels and emission factors for used fuels in each emission category. The provincial- and regional-based calculations have also been made for China and India. The total SO2 emissions in these parts of Asia have been calculated to be 18.3 and 29.1 Tg in 1975 and 1987, respectively. The calculated total NOx emissions were 9.4 and 15.5 Tg in 1975 and 1987, respectively. The SO2 and NOx emissions in East Asia (China, Japan, South Korea, North Korea and Taiwan) were 23.4 and 10.7 Tg in 1975 and 1987, respectively.Keyword: Emission inventories, sulfur dioxide emissions, nitrogen oxide emissions, Asian emissions, anthropogenic emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号