首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative Risk Assessment (QRA) has been a very popular and useful methodology which is widely accepted by the industry over the past few decades. QRA is typically carried out at a stage where complete plant has been designed and sited. At that time, the opportunity to include inherent safety design features is limited and may incur higher cost. This paper proposes a new concept to evaluate risk inherent to a process owing to the chemical it uses and the process conditions. The risk assessment tool is integrated with process design simulator (HYSYS) to provide necessary process data as early as the initial design stages, where modifications based on inherent safety principles can still be incorporated to enhance the process safety of the plant. The risk assessment tool consists of two components which calculate the probability and the consequences relating to possible risk due to major accidents. A case study on the potential explosion due to the release of flammable material demonstrates that the tool is capable to identify potential high risk of process streams. Further improvement of the process design is possible by applying inherent safety principles to make the process under consideration inherently safer. Since this tool is fully integrated with HYSYS, re-evaluation of the inherent risk takes very little time and effort. The new tool addresses the lack of systematic methodology and technology, which is one of the barriers to designing inherently safer plants.  相似文献   

2.
Complex systems often experience a long period of incubation before accidents occur. Therefore, a proactive risk assessment is essential for process safety. The conventional job hazard analysis (JHA) method has been an effective tool to conduct a process risk assessment in the high-risk industrial field. However, the conventional JHA is inadequate for the proactive risk assessment since it is usually conducted during and before one specific operation process. Operations such as startup and maintenance are performed repeatedly on the lifecycle of a plant. Therefore, the risk reduction measures for the industrial process should include not only preventive actions obtained from the conventional JHA but also recovery ones. Resilience engineering (RE) has proven to be helpful for the recovery analysis of a complex system. The objective of this paper is to propose a proactive and comprehensive process risk assessment approach based on JHA and RE. The mechanism of applying RE to address operation process risk is illustrated. The integrated approach can provide guidelines to establish proactive risk reduction measures as well as maintain a low-risk level. Finally, a gas transmission startup process risk assessment case is presented to demonstrate its applicability.  相似文献   

3.
Tetsu Moriyama  Hideo Ohtani   《Safety Science》2009,47(10):1379-1397
Although it has been estimated that as many as 80% of all occupational accidents have human errors as a cause, no risk assessment tools incorporating human-related elements have been developed for small companies. Human error probability (HEP) and human error analysis (HEA) have been used for large-scale, safety-critical industries for last three decades, but these tools are not suitable for smaller, more general industries that comprise the majority of accident settings.Here, we describe and verify a risk assessment tool that includes human-related elements for small companies. The tool expands on traditional risk assessment methods, such as matrix, risk graph and numerical scoring method, by adding human-related elements. The tool is easy-to-use in occupational environments, and includes assessments of human behavior and potentially outdated machinery at work place.  相似文献   

4.
The lack of formal integration between process design stages with risk and consequence estimation is a hurdle to designing inherently safe process plants. Conventional risk assessment methodologies are often not carried out concurrently with process design. Therefore, process designers lack the information about risk levels and consequence that may result from the process conditions being considered in a particular process route until the design is completed. Hence, effects of changes in process conditions on risk levels and consequence cannot be studied in a time effective manner during the design stages. Few studies have been identified on the possibility and viability of integrating risk estimation with process design. But viable framework and methodology for doing so has not yet been reported. This paper presents a feasible framework in which risk and consequences estimation can be part of design stages. A demonstrative tool named as integrated risk estimation tool (iRET) was developed by using process simulation software, HYSYS and spreadsheet, MS Excel as the platforms. iRET estimates risk due to explosions by using TNT equivalence method and the TNO correlation method. iRET has a potential to be extended to include all forms of risk such as fire, explosion, toxic gas releases and boiling liquid expanding vapour explosion (BLEVE). The paper also presents case studies to demonstrate the functionality and viability of using iRET in conjunction with process design. The results of these case studies have successfully shown that the risk due to explosion can be assessed during the initial design stage ensuring a safer plant. The framework and iRET there by presented here provide systematic methodology and technology to design inherently safer plants.  相似文献   

5.
The issue of risk assessment has been always the matter of debate in large engineering projects (LEPs). The assessment is an indispensable means for the projects to accomplish their objectives. It is firmly accepted that LEPs are particularly subject to more potential risks than other business activities because of their complexity, uncertainty and ambiguity. These characteristics are often conducive to small sample sizes of the gathered risk data in practice. Consequently, traditional statistical techniques cannot contribute significantly to analyze the risk data. The non-parametric resampling technique, namely bootstrap, has been used subsequently to solve numerous complicated problems and evaluate the accuracy of a parameter estimator in situations where commonly used techniques are not valid. It is also more natural, applicable and simple to estimate the risk data in an interval form under decision-making process by considering the concept of safety by professional experts in LEPs. Hence, in this paper, a new approach based on bootstrap technique with the interval analysis is presented in the context of the project risk assessment. The proposed approach not only plays an important role in reducing risk data and saving time but also is more economical. A real case study is conducted to illustrate the applicability of the approach. Finally, the comparison results indicate that the proposed approach outperforms the traditional technique in terms of the accuracy and efficiency.  相似文献   

6.
A tool for the quantification of the consequences of toxic dispersions coming from fires in warehouses has been developed. This tool is expected to be applied in the framework of the risk assessment in Catalonia, specifically in the Quantitative Risk Assessment. The present study is based on the criteria gathered in the technical guide BEVI 3.2 and the methodology CPR-15 used in the Netherlands. Hence, the approach performed accepts the main body of the foresaid methodology but implements a different and free source dispersion model, a modified Gaussian model that takes into account the warehouse effect. In the work conducted, a historical analysis of accidents involving fire in warehouses has been performed in order to justify the importance of assessing their potential toxic dispersions. Furthermore, the tool has been tested in different case studies providing results that have been compared with other methodologies, observing similar results that can be useful for the stakeholders and decision makers in the framework of the risk assessment.  相似文献   

7.
A tool has been developed for supporting practitioners when assessing manual pushing and pulling operations based on an initiative by two global companies in the manufacturing industry. The aim of the tool is to support occupational health and safety practitioners in risk assessment and risk management of pushing and pulling operations in the manufacturing and logistics industries. The tool is based on a nine-multiplier equation that includes a wide range of factors affecting an operator’s health risk and capacity in pushing and pulling. These multipliers are based on psychophysical, physiological and biomechanical studies in combination with judgments from an expert group consisting of senior researchers and ergonomists. In order to consider usability, more than 50 occupational health and safety practitioners (e.g., ergonomists, managers, safety representatives and production personnel) participated in the development of the tool. An evaluation by 22 ergonomists supports that the push/pull tool is user friendly in general.  相似文献   

8.
The overall objective of the maintenance process is to increase the profitability of the operation and optimize the total life cycle cost without compromising safety or environmental issues. Risk assessment integrates reliability with safety and environmental issues and therefore can be used as a decision tool for preventive maintenance planning. Maintenance planning based on risk analysis minimizes the probability of system failure and its consequences (related to safety, economic, and environment). It helps management in making correct decisions concerning investment in maintenance or related field. This will, in turn, result in better asset and capital utilization.

This paper presents a new methodology for risk-based maintenance. The proposed methodology is comprehensive and quantitative. It comprises three main modules: risk estimation module, risk evaluation module, and maintenance planning module. Details of the three modules are given. A case study, which exemplifies the use of methodology to a heating, ventilation and air-conditioning (HVAC) system, is also discussed.  相似文献   


9.
Fires and explosions have been identified as major potential hazards for Oil and Gas Floating Production Storage Offloading (FPSO) installations and pose risk to personnel, assets, and the environment. Current fire and explosion assessment (FEA) tools require physical effect modeling software and follows standards from API, ISO, and engineering practices. However, the tools are not specific to any particular system such as an FPSO, and do not provide comprehensive guidance for safety engineers to perform FEA.This paper discusses the development of a screening and comparison tool for FEA on FPSOs and the incorporation of an expert system into the tool. The results are computerized using MS Excel/VBA to provide a structured and comprehensive assessment on each equipment and module handling natural gas, crude oil, methanol and diesel on FPSO topsides.This tool features built-in calculations for jet and pool fire size estimation for gas/liquid releases, and the ability to perform Quantitative Risk Analysis (QRA) to specify the personnel and equipment risk for varying leak sizes and process conditions. Control and recovery measures are incorporated as an expert system based on report findings, engineering practices, and relevant standards. Bowtie analysis is applied in the tool to define detailed control and recovery measures for the FPSO based on the incident scenarios. An explosion assessment is performed by incorporating physical effect modeling software results.Unique features provided in the tool include fire and radiation contour mapping on an FPSO layout to help determine personnel and equipment risk more accurately and fire pump sizing that can be used to verify the amount of water deluge system required to mitigate fires and explosions. In addition, flexibility of data input (process data, failure rate data, etc.) and user interfaces assist safety engineers to screen and compare process alternatives, check design quality, and evaluate design options at any design stage.  相似文献   

10.
把信息化技术用于油气田安全领域,用采集的现场数据评估安全生产环境,实现油气田安全信息化是近年来的新课题。为了有效地监测和预防油三高气田(高含硫、高产量、高压力)井喷事故造成的灾害,讨论了基于网络架构的重大事故现场监测数据采集管理系统软件的研究与设计,包括气象数据,传感器数据,监测设备GPS数据与视频信息的实时采集、处理、分析与显示,并且分段说明了该系统各部分的设计和实现的重点.该系统具有友好的人机界面,并且引入了流媒体技术、无线传感器技术等多种先进技术,能够最大程度地得到全面的表征油气田安全的数据与信息;该系统已经在研究实例龙岗油气田的实验中证明了具有安全生产方面的现实意义。  相似文献   

11.
This paper presents a risk assessment methodology for high pressure CO2 pipelines developed at the Health and Safety Laboratory (HSL) as part of the EU FP7 CO2Pipehaz project. Until recently, risk assessment of dense phase and supercritical CO2 pipelines has been problematic because of the lack of suitable source term and integral consequence models that handle the complex behaviour of CO2 appropriately. The risk assessment presented uses Phast, a commercially available source term and dispersion model that has been recently updated to handle the effects of solid CO2. A test case pipeline was input to Phast and dispersion footprints to different levels of harm (dangerous toxic load and probit values) were obtained for a set of pipeline specific scenarios. HSL's risk assessment tool QuickRisk was then used to calculate the individual and societal risk surrounding the pipeline. Knowledge gaps that were encountered such as: harm criteria, failure rates and release scenarios were identified and are discussed.  相似文献   

12.
A software procedure was developed for the quantitative assessment of domino effect. The procedure was based on a systematic methodology for the identification of domino scenarios and for the assessment of consequences and expected frequencies of the escalation events. A geographical information system (GIS) platform was interfaced to the domino assessment software. The implementation of plant lay-out data to the GIS allowed the automatic identification of the possible targets of escalation effects by the software procedure, and a straightforward calculation of the contribution to individual and societal risk indexes caused by the possible domino scenarios. The procedure was applied to the analysis of several case-studies based on actual plant lay-outs. The results evidenced that the approach allows the quantitative assessment of risk caused by escalation events with a limited additional effort with respect to that required by a conventional QRA. The use of a GIS-based software was a key element in the limitation of the effort required for the quantitative assessment of domino scenarios. Moreover, the results of the case-studies pointed out that the estimation of risk increase due to domino events is an important tool for an effective assessment and control of industrial risk in chemical and process plants.  相似文献   

13.
University chemical laboratory is a high-risk place for teaching and scientific research due to the presence of various physical and chemical hazards. In recent years, university chemical laboratory accidents occur frequently. This urges the need to enhance university chemical lab safety. A semi-quantitative methodology comprising Matter-Element Extension Theory (MEET) implemented with Combination Ordered Weighted Averaging (C-OWA) operator is proposed to assess the risk of a university chemical laboratory. First, an index-based risk assessment system of university chemical laboratory is built by identifying various risk factors from a system perspective. Then, C-OWA operator is used to calculate the weight of assessment indices, whereas MEET is employed to determine the correlation degree of assessment indices. Finally, the comprehensive risk of university chemical laboratories is assessed, and some safety measures are proposed to reduce the risk of university chemical laboratories. The applicability of the proposed methodology is tested using a practical case. It is observed that the methodology can be a useful tool for risk assessment and management of university chemical laboratories.  相似文献   

14.
Computational fluid dynamics (CFD) simulations have been conducted for dense gas dispersion of liquefied natural gas (LNG). The simulations have taken into account the effects of gravity, time-dependent downwind and crosswind dispersion, and terrain. Experimental data from the Burro series field tests, and results from integral model (DEGADIS) have been used to assess the validity of simulation results, which were found to compare better with experimental data than the commonly used integral model DEGADIS. The average relative error in maximum downwind gas concentration between CFD predictions and experimental data was 19.62%.The validated CFD model was then used to perform risk assessment for most-likely-spill scenario at LNG stations as described in the standard of NFPA 59A (2009) “Standard for the Production, Storage and Handling of Liquefied Natural Gas”. Simulations were conducted to calculate the gas dispersion behaviour in the presence of obstacles (dikes walls). Interestingly for spill at a higher elevation, e.g., tank top, the effect of impounding dikes on the affected area was minimal. However, the impoundment zone did affect the wind velocity field in general, and generated a swirl inside it, which then played an important function in confining the dispersion cloud inside the dike. For most cases, almost 75% of the dispersed vapour was retained inside the impoundment zone. The finding and analysis presented here will provide an important tool for designing LNG plant layout and site selection.  相似文献   

15.
For monitoring and control of major hazard installations storing flammable gas, the risk based warning/early-warning is very important. A set-pair analysis (SPA) based fuzzy assessment method (SPA–fuzzy) is proposed for the real-time risk assessment in this paper. Based on principle of SPA and fuzzy logic theory, the likelihood of accident occurrence and the consequence of the accident can be assessed, and the risk value or risk degree can be evaluated. The method takes advantage of the data acquired from the real-time safety monitoring system, so that the varying of the risk can be revealed during an accident developing. The risk assessment simulation of VCE accident caused by gas leaked from LPG tank is performed. It is shown that SPA–fuzzy method has the same risk value as that assessed by normal fuzzy method.  相似文献   

16.
In 2006, an unprecedented atmospheric confined space accident took place in a sampling shed at the Sullivan Mine in Kimberley, British Columbia. This accident suggests that a risk assessment should be carried out on a regular basis at mine reclamation sites for many years after closure. In this paper, an Atmospheric Fuzzy Risk Assessment (AFRA) tool is described that can assess atmospheric risk given heuristic and measured data at such sites. It can also serve to transfer knowledge about atmospheric hazards in an enclosed structure. The system uses fuzzy logic to input and output information and to perform weighted inferencing. The paper describes the developmental process as well as system verification and validation based on a number of known test and reference waste dumps. AFRA is a heuristic expert system based on fuzzy logic and the first tool that was developed to assess the atmospheric risk of mine waste dumps. The atmospheric risk is estimated by fuzzy Mamdani system given the values of four major elements of risk comprising of: gas generation, gas emission, gas confinement, and human exposure. The ability of AFRA to adapt its risk assessment to different climate conditions is explained. There are many physical, chemical, and environmental factors which fluctuate over time affecting oxygen-depletion in waste dumps. AFRA can help mining engineers and mine managers recognize this type of danger when conducting a confined space inventory at a reclamation site.  相似文献   

17.
Floods have become increasingly alarming worldwide. Flood risk management in terms of assessing disaster risk properly is a great challenge that society faces today. Natural disaster risk analysis is typically beset with issues such as imprecision, uncertainty, and partial truth. There are two basic forms of uncertainty related to natural disaster risk assessment, namely, randomness caused by inherent stochastic variability and fuzziness due to macroscopic grad and incomplete knowledge sample. However, the traditional probability statistical method ignores the fuzziness of risk assessment with incomplete data sets and requires a large sample size of data. The fuzzy set methodology is introduced in the area of disaster risk assessment to improve probability estimation. The purpose of the current study is to establish a fuzzy model to evaluate flood risk with incomplete data sets. The present paper puts forward a composite method based on variable fuzzy sets and information diffusion method for disaster risk assessment. The results indicate that the methodology is effective and practical; thus, it has the potential to forecast the flood risk in flood risk management. We hope that by conducting such risk analysis, the impact of flood disasters can be mitigated in the future.  相似文献   

18.
吴忠广      申瑞君    万福茂    张迪   《中国安全生产科学技术》2017,13(5):108-115
为建立高速公路岩质高边坡风险评估指标体系,针对指标选取代表性不足、指标分级阈值缺少定量判据、指标获取困难等问题,采用逐坡普查与重点调查、工程地质类比与复核、现场监测与数值计算相结合的方法,提出了岩质高边坡运营安全风险评估指标体系。包括边坡断面几何特征、水的影响、边坡岩体结构、支挡加固设施及边坡破坏模式等5个一级指标与坡高、坡度等15个二级指标,并确定了量化分级标准与取值方法。评估结果表明:指标体系适用性较强,为后续评估运营安全风险奠定了基础。  相似文献   

19.
The aim of this paper is to provide a simple methodological tool for the incorporation of human factors in the process of risk assessment. This attempt takes place through a simplified quantification scheme including various affecting factors for intentional and unintentional human behavior in risky situations. This scheme is simple and autonomous and it can be applied in a “bow-tie” analysis. It produces numerical coefficients to adjust “nominal” estimated probabilities in order to take the impact of human factors into account. Although the whole approach lacks theoretical accuracy, it remains simple and proper for risk assessment in small scale workplaces. A simple example for the application of this tool is also presented.  相似文献   

20.
Chemical accidents in the vicinity of densely populated areas can cause colossal damage. Close proximity of chemical facilities to the general public has been identified as a major issue for increased human exposure in 43% of the accidents investigated by the U.S. Chemical Safety Board (CSB). This emphasises the need for incorporating societal factors in risk assessment to plan actions in order to minimise exposure during accidents. The purpose of this research is to develop a model for the assessment of human vulnerability and risk due to chemical accidents. A GIS based methodology is proposed which uses computer aided hazard modelling tools and technical guidelines to model accidents and assesses population vulnerability. The population vulnerability is determined based on a set of societal indicators derived from relevant research work, expert opinions and suggestions by World Bank. Risk is defined as the probable magnitude of harm to humans and dependent on both the degrees of hazard and vulnerability. A case study is carried out by applying the methodology to Meghnaghat Industrial Area in Bangladesh. Accident scenarios are built and hazard modelling software ALOHA is used to spatially display accident footprints. Vulnerability of population is assessed using data from Bangladesh Bureau of Statistics (BBS) and field survey. The hazard footprints and vulnerability map are superimposed using mapping software ArcGIS to generate a composite risk map. The risk map is used to assess existing land use and recommendations are made for future land use planning. The composite risk map is expected to be of help for effective community response, emergency response planning and allocation of medical and support services during emergencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号