首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用聚合多巴胺(PDA)包覆溶剂热法制备Fe_3O_4磁性微球,得到Fe_3O_4@PDA复合材料,并采用红外光谱、扫描电镜、透射电镜对复合材料进行表征。同时,对Fe_3O_4@PDA吸附溶液中六价铬(Cr(Ⅵ))的性能进行研究,考察了溶液pH对其吸附性能的影响。结果表明:Fe_3O_4@PDA在溶液pH为3.0时对Cr(Ⅵ)有较好的吸附性能,其吸附动力学数据符合伪二级动力学方程,等温吸附符合Langmuir吸附模型,最大吸附容量达到108.8 mg/g,热力学实验计算出的吉布斯自由能为负值,表明Cr(Ⅵ)在Fe_3O_4@PDA的吸附为自发过程。  相似文献   

2.
膨胀石墨对废水中铬的吸附研究   总被引:2,自引:0,他引:2  
用微波法在1 000 W下微波膨胀60 s制备了膨胀石墨,并考察了pH值、吸附剂用量、不同初始浓度以及温度对膨胀石墨吸附废水中六价铬的影响,实验结果表明:当膨胀石墨的用量为0.1 g,pH=3,六价铬溶液初始浓度为10 mg/L,温度为15℃时,膨胀石墨对六价铬的去除率能达到39.94%,吸附能够较好地符合Langmuir吸附等温式以及二级动力学模型。  相似文献   

3.
采用水热法合成了四氧化三铁@碳/氧化石墨烯(Fe_3O_4@C/GO)复合材料,并利用XRD、TEM、VSM等对其结构与性质进行了表征,进一步研究了其对水中染料的吸附性能.研究结果表明,Fe_3O_4比较均匀地分散在GO上;在实验范围内,随着GO用量、罗丹明B初始浓度或吸附温度的提高,Fe_3O_4@C/GO复合材料对罗丹明B染料的饱和吸附量均相应地增加;而且高GO用量条件下所制备的复合材料的吸附速率更快;随着pH值在2~11范围内增加,复合材料的饱和吸附量先增大后降低,pH值为7时达到最大值.对于GO和Fe_3O_4质量比为0.8的条件下所制备的Fe_3O_4@C/GO复合材料,当罗丹明B初始浓度为1000mg/L,其饱和吸附量可达到303.4mg/g.  相似文献   

4.
采用水热法制得磁性Fe_3O_4,利用巯基乙酸(TGA)修饰Fe_3O_4(Fe_3O_4-SH),戊二醛(GLA)为交联剂使壳聚糖(CS)与Fe_3O_4-SH进行化学交联,制备磁性壳聚糖(Fe_3O_4-SH/CS)。以靛蓝胭脂红为吸附对象,研究接触时间、pH值、温度及染料初始浓度对Fe_3O_4-SH/CS吸附靛蓝胭脂红的影响。结果表明,pH值为3,Fe_3O_4-SH/CS对靛蓝胭脂红溶液的最大吸附量可达到531 mg/g。等温吸附数据与Freundlich等温吸附模型拟合良好,吸附动力学数据符合拟二级动力学模型。Fe_3O_4-SH/CS对靛蓝胭脂红水溶液具有很高的去除率。  相似文献   

5.
制备了一种磁性羟基磷灰石/生物炭复合材料(HAP/γ-Fe_2O_3/BC)并对其吸附Pb~(2+)的动力学及热力学特性和固液分离回收性能进行了研究.通过扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱仪(FTIR)等对复合前后的材料进行微观结构表征与分析,利用振动样品磁强计(VSM)研究样品的磁化性能.通过参数计算获得吸附方程与热力学性质.结果表明:羟基磷灰石和γ-Fe_2O_3微粒均负载到生物炭上.相对于BC,复合后的HAP/γ-Fe_2O_3/BC对Pb~(2+)的吸附性能明显提高,并具有良好的磁分离能力.pH值对Pb~(2+)的吸附影响较大,最佳pH值为4.0~5.0.当吸附剂投加量为1 g·L~(-1)、pH值为5、Pb~(2+)的初始浓度为100 mg·L~(-1)时,HAP/γ-Fe_2O_3/BC对Pb~(2+)的去除率达到99%.吸附等温方程和动力学方程的拟合结果分别符合Langmuir吸附等温模型和准二级动力学模型,热力学参数△G0、△H0,是自发吸热的单分子层化学吸附过程.吸附机制主要包括溶解-沉淀作用、离子交换及复合材料表面含氧官能团的络合作用.HAP/γ-Fe_2O_3/BC复合材料在外加磁场的作用下具有良好的分离回收和循环利用性能,是一种潜在的Pb~(2+)高效吸附材料.  相似文献   

6.
通过两步水热法合成了Fe_3O_4@NH_2-MOF(Al)磁性纳米复合材料,采用透射电子显微镜、磁性能分析表征手段对合成样品的形貌以及磁性进行了表征。应用其对靛蓝二磺酸钠染料进行吸附,考察了离子强度、pH值、吸附等温线,吸附动力学和吸附热力学的影响。利用再生性这一特征,用不同洗脱剂进行脱附和再利用。试验结果表明,该材料为纳米级,且具备磁性纳米材料优良的物理和化学性质。该材料具有超顺磁性,在外加磁场的作用下可以实现快速分离。动力学试验研究证明吸附过程符合二级动力学拟合模型,吸附为放热过程,并且是自发进行的。对该材料进行了再生性能考察证明,Fe_3O_4@NH_2-MOF(Al)不仅具有较高的吸附能力,而且可以实现重复利用。  相似文献   

7.
张巧利  徐强  张升晓  张宗元  罗浩 《环境工程》2017,35(11):133-137
将法桐树叶煅烧得到生物质炭(BAC),以溶剂热法将Fe_3O_4原位生成负载于BAC表面制备磁性生物质炭复合材料(BAC/Fe_3O_4)。用SEM、XRD、TEM、IR、VSM等对复合材料进行表征。实验结果表明:BAC/Fe_3O_4对对硝基苯酚的吸附在溶液pH为10.0的条件下有较高的吸附量,吸附行为符合朗格缪尔吸附等温线,最大吸附量为246.3 mg/g,吸附过程符合伪二级反应动力学方程,吸附速率较快。该材料可以有效地去除对硝基苯酚,在去除有机污染物方面有较大潜力。  相似文献   

8.
该研究利用简单的化学合成法合成新型Fe_3O_4@SiO_2/PEI修饰的氧化石墨烯磁性复合材料,并用于去除水中的Cu(Ⅱ)离子,通过Box-Behnken响应面法对pH、Cu(Ⅱ)离子的初始浓度和反应温度3个变量进行优化,得到MSPG对Cu(Ⅱ)离子吸附的最优吸附条件为初始p H为5、初始浓度80 mg/L、反应温度为40℃时,最大理论吸附量为61.48 mg/g。而在最佳条件下进行验证实验,实验值为61.55 mg/g,与理论值相近。吸附动力学研究和等温线研究表明吸附过程在6 h达到平衡,分别符合准二阶动力学模型与Freundlich等温模型,粒子内扩散并不是整个过程中唯一的速率控制步骤。热力学研究证明MSPG对Cu(Ⅱ)的吸附过程是吸热的自发过程。  相似文献   

9.
以聚合多巴胺为碳源制备碳材料包覆的磁性纳米颗粒.通过多巴胺的自聚合反应将其包覆在Fe_3O_4纳米颗粒上,在氩气保护下高温灼烧得Fe_3O_4@C复合材料.包覆碳材料后,Fe_3O_4颗粒的稳定性和分散性提高.使用扫描电镜、透射电镜、红外光谱和振动磁强计对材料进行了表征.结果表明成功地制备了核壳结构的Fe_3O_4@C复合材料.用甲基绿来考察Fe_3O_4@C的吸附性能.研究表明,溶液pH对甲基绿的吸附有显著的影响,随溶液pH的升高,甲基绿的吸附容量显著增大.用朗格缪尔吸附等温模型拟合出在纯水、湖水和自来水中Fe_3O_4@C对甲基绿的最大吸附容量分别为490.1、442.5和389.1 mg·g~(-1).热力学研究计算出吸附的吉布斯自由能为负值,说明吸附是自发过程.动力学研究表明甲基绿在Fe_3O_4@C上的吸附过程符合拟二级反应动力学方程,吸附速率较快.  相似文献   

10.
以邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸丁苄酯(BBP)和邻苯二甲酸二丁酯(DBP)4种邻苯二甲酸酯(PAEs)模拟废水为处理对象,采用纳米四氧化三铁(Fe_3O_4)与过氧化钙(CaO_2)组成新型非均相类芬顿试剂,研究纳米Fe_3O_4投加量、CaO_2投加量和初始pH值对模拟废水中4种PAEs去除率的影响,并采用响应面法对反应条件进行了拟合与优化。结果表明:纳米Fe_3O_4/CaO_2反应体系能有效降解模拟废水中4种PAEs,其中CaO_2对废水中DMP和DEP具有较强的降解能力,纳米Fe_3O_4可以显著强化CaO_2对废水中BBP和DBP的降解作用;纳米Fe_3O_4/CaO_2反应体系可在初始pH值为中性条件下降解模拟废水中4种PAEs;当纳米Fe_3O_4∶CaO_2∶PAEs摩尔比为2∶5∶1、溶液初始pH值为5时,模拟废水中DMP、DEP、BBP、DBP的平均去除率分别为94.6%、95.7%、68.2%和68.7%。  相似文献   

11.
文章以海藻酸钠(SA)为原料,与羧基化微晶纤维素(CCN)、四氧化三铁(Fe_3O_4)进行溶液共混,采用化学沉淀法制备出Fe_3O_4@CCN/SA复合微球。以硝酸铅溶液为研究对象,探讨了初始浓度、pH、吸附时间对吸附性能的影响。结果表明:Pb~(2+)浓度为1 000mg/L,pH=5,吸附时间为6 h时,饱和吸附量最大为184.2 mg/g。吸附符合Langmuir等温线模拟和拟二级反应动力学模型。该磁性微球使用盐酸解析脱附,重复使用第6次饱和吸附量仍高达165.5 mg/g,说明Fe_3O_4@CCN/SA磁性微球具有良好的再生使用性能。  相似文献   

12.
通过水热法对冷冻干燥得到的雨生红球藻粉(PRCP)进行改性,合成了磁性γ-Fe2O3/PRCP,并采用X-射线衍射仪(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、X-射线光电子能谱(XPS)、X射线能谱分析(EDS)、BET等方法对材料的形貌和结构进行了表征,通过静态吸附实验分别探究了不同pH值、初始铀浓度、温度、时间等对铀酰离子吸附性能的影响.结果表明,在初始pH=6时,材料对铀的吸附效果最好.从吸附动力学看,吸附过程更符合准二级动力学模型.通过对材料进行热力学模型拟合发现,在25℃、pH=6时材料吸附过程更符合Langmuir方程,且随着溶液中初始铀酰离子浓度的升高,材料表现出了更好的吸附效果.  相似文献   

13.
李福清 《环境工程》2019,37(5):117-121
利用溶剂热法制备了具有不同TiO_2外壳厚度的Fe_3O_4@TiO_2复合纳米材料,并探究其对砷及染料的去除机理。通过材料表征发现:Fe_3O_4@TiO_2复合材料为典型的核壳结构,Fe_3O_4与TiO_2通过化学反应结合形成Ti~(3+),材料感光范围展宽>600 nm;通过吸附等温线实验,n(TiO_2)∶n(Fe_3O_4)为0. 5时,Fe_3O_4@TiO_2复合材料对砷有较好的吸附效果(30 mg/g);可见光下,Fe_3O_4@TiO_2复合材料对染料甲基橙具有高效的光催化效率。Fe_3O_4@TiO_2复合材料是一种既可去除砷又可光催化降解染料的多功能材料,在环境污染治理方面将有广阔的应用前景。  相似文献   

14.
以可溶性淀粉作为稳定剂制备纳米Fe_3O_4粒子,探讨了反应时间、p H值、初始砷浓度和腐殖酸对Fe_3O_4纳米粒子吸附水体中As(V)的吸附效果影响.实验结果表明,淀粉稳定的Fe_3O_4纳米粒子对水体中As(V)的吸附动力学过程符合准二级动力学,吸附等温线符合Langmuir吸附模型;吸附容量随着溶液p H的增加逐渐降低,在p H为8.0的弱碱性水体中对As(V)的最大吸附容量可达202.56 mg·g~(-1);此外,腐殖酸(HA)能降低纳米粒子对As(V)的吸附能力.  相似文献   

15.
该文采用溶剂热法合成了不同微结构特性的磁性Co_xCu_(1-x)Fe_2O_4纳米吸附剂,通过透射电子显微镜(TEM)、X-射线衍射(XRD)、BET比表面积仪、磁强计等手段研究了材料的特性,并将此应用于水中五氯苯酚的吸附。结果表明,Co_xCu_(1-x)Fe_2O_4具有良好的吸附能力和磁性能。最合适的调控制备条件是Co含量(x)为0.5,处理温度为200℃。吸附剂对五氯苯酚的吸附符合Langergren一级动力学模型,平衡吸附量为21.55 mg/g;吸附等温线符合Freundlich模型。此外,Co_xCu_(1-x)Fe_2O_4具有良好磁性,容易回收,经O_3再生处理,可重复使用。  相似文献   

16.
王君  周怡伶  陈勇  吴波 《环境科学学报》2019,39(8):2567-2574
以SiO_2包覆Fe_3O_4,戊二醛为交联剂,交联壳聚糖(Chitosan, CTS),制得Fe_3O_4@SiO_2-Chitosan复合磁性纳米粒子.以Fe_3O_4和Fe_3O_4@SiO_2为对照,采用X射线衍射、透射电镜和傅立叶红外光谱对其进行表征分析,并测定了投加量、pH值、吸附时间和温度等因素对Cu~(2+)吸附效果的影响,从动力学、热力学以及再生回用性能评价等方面对其吸附性能进行了探究.结果表明Fe_3O_4@SiO_2-Chitosan对Cu~(2+)的吸附过程符合准二级吸附动力学模型和Langmuir模型,为自发、放热、优惠型的单分子层化学吸附.在pH为6.0, 298 K下达到最大吸附量154.8 mg·g~(-1),吸附解吸4次后吸附容量变化不大,说明Fe_3O_4@SiO_2-Chitosan具有较高的吸附容量,可作为处理含铜废水和回收铜的高效吸附剂.  相似文献   

17.
超声协同Fe0@Fe3O4降解四氯化碳   总被引:1,自引:0,他引:1  
采用附着在Fe_3O_4纳米颗粒上的纳米零价铁(n ZVI)对四氯化碳(CCl4)还原脱氯.同时,利用SEM和BET等技术对Fe~0@Fe_3O_4的表面形貌和粒径进行表征,探究了不同反应条件如Fe~0@Fe_3O_4投加量、超声功率、初始pH值、温度和CCl4初始浓度对CCl4去除率的影响.最后,比较了Fe~0@Fe_3O_4、n ZVI和Fe_3O_4颗粒对CCl4的去除效果.结果表明,Fe~0@Fe_3O_4比n ZVI比表面积更大、分散性更好.超声功率和温度的提高对CCl4的降解有明显的促进作用.在最佳条件(催化剂投加量0.5 g·L-1,超声功率300 W,初始pH=7.0,温度30℃,CCl4初始浓度2 mg·L-1)下,Fe~0@Fe_3O_4复合材料在60 min内对CCl4的去除效率为88.5%,明显高于n ZVI(60.9%)和Fe_3O_4颗粒(13.2%).Fe~0@Fe_3O_4对CCl4去除过程符合伪一级动力学模型.  相似文献   

18.
通过化学共沉淀法制备铁氧化物修饰的多壁碳纳米管(MWCNTs)用于去除水中红霉素,对铁氧化物修饰的多壁碳纳米管(MWCNTs)进行X-射线衍射分析与磁强测定,研究去除红霉素的效果及影响效果的因素,探讨吸附动力学、热力学与吸附机理。结果表明:铁氧化物为磁性的Fe_3O_4和γ-Fe_2O_3,磁性良好,可从水中通过磁分离回收。磁性铁氧化物修饰后显著提高MWCNTs对红霉素的去除效果,对于红霉素初始浓度为20 mg/L,0.5 g/L磁性的MWCNTs 30 min红霉素去除率达到87.23%。红霉素去除率随吸附剂投加量的增大而增大,随红霉素初始浓度的增大而下降,随p H值的提高而略有增大。吸附过程遵循拟二级动力学模型和Langmuir吸附等温方程,是以物理吸附为主,化学吸附为辅的吸热反应。吸附红霉素的磁性MWCNTs通过微波辐射可实现再生循环使用,具有应用前景。  相似文献   

19.
通过Hemin催化聚合苯胺工艺在纳米Fe_3O_4上负载导电聚合物聚苯胺(PANI),制备得到了具有高效催化活性的异相类Fenton反应用的催化剂PANI@Fe_3O_4.研究了PANI@Fe_3O_4/H_2O_2体系中罗丹明B(RhB)浓度、H_2O_2浓度、PANI@Fe_3O_4投加量、pH值以及·OH捕获剂对RhB降解的影响.结果表明,对于400mg/L的RhB溶液,当催化剂投加量为0.5g/L,H_2O_2浓度为0.04mol/L时,PANI@Fe_3O_4/H_2O_2可在pH3.75~12.0间达到98%以上的去除率,H_2O_2的利用率达到80%.将该体系对于初始COD为1715mg/L模拟混合染料废水,可去除70%的C0D,PANI@Fe_3O_4/H_2O_2体系适用pH值范围广,催化活性高,H_2O_2利用率高且水相中残留铁离子少.机理分析表明,在PANI@Fe_3O_4中PANI和纳米Fe_3O_4存在明显的协同效应,纳米Fe_3O_4部分溶解释放出Fe~(2+),并通过Fe~(3+)和Fe~(2+)间的快速电子转移补充催化所需Fe~(2+).PANI提供反应所需H~+,并通过与铁离子形成配位键而减少了铁离子释放到水相中.  相似文献   

20.
采用共沉淀法制备纳米级Fe_3O_4,将其包覆在纳米Pd/Fe颗粒表面制成纳米级Fe_3O_4-Pd/Fe复合材料,并用于2,4-二氯苯氧乙酸(2,4-D)的催化脱氯.同时,采用透射电镜(TEM)、扫描电镜(SEM)等方法对复合材料的结构进行分析,并考察了初始pH、钯化率、反应温度、纳米Fe_3O_4投加量等实验参数对n Fe_3O_4-Pd/Fe复合材料催化脱氯2,4-D的影响.结果发现,纳米Fe_3O_4粒径小于Pd/Fe纳米颗粒,具有一定的磁性,包覆于纳米Pd/Fe表面,提高了纳米材料的稳定性及分散性,并有利于复合材料的回收和循环利用.此外,纳米Fe_3O_4具有一定的导电性,可作为良好的电子通道为纳米Pd/Fe颗粒传递电子,促进反应的进行,增强2,4-D的去除效果.实验结果表明,较高的钯化率、反应温度、Fe_3O_4∶Fe质量比及中性pH条件均有利于反应的进行.当纳米Fe投加量为1.0 g·L-1,m(Fe_3O_4)∶m(Fe)为1∶1,初始pH为7.0,钯化率为0.15%,反应温度为25.0℃时,反应90 min后,40.0 mg·L-1的2,4-D的去除率达到100%,苯氧乙酸(PA)的生成率达99.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号