首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Conservation focuses on maintaining biodiversity and ecosystem functioning, but gaps in our knowledge of species biology and ecological processes often impede progress. For this reason, focal species and habitats are used as surrogates for multispecies conservation, but species‐based approaches are not widely adopted in marine ecosystems. Reserves in the Solomon Islands were designed on the basis of local ecological knowledge to conserve bumphead parrotfish (Bolbometopon muricatum) and to protect food security and ecosystem functioning. Bumphead parrotfish are an iconic threatened species and may be a useful surrogate for multispecies conservation. They move across tropical seascapes throughout their life history, in a pattern of habitat use that is shared with many other species. We examined their value as a conservation surrogate and assessed the importance of seascape connectivity (i.e., the physical connectedness of patches in the seascape) among reefs, mangroves, and seagrass to marine reserve performance. Reserves were designed for bumphead parrotfish, but also enhanced the abundance of other species. Integration of local ecological knowledge and seascape connectivity enhanced the abundance of 17 other harvested fish species in local reserves. This result has important implications for ecosystem functioning and local villagers because many of these species perform important ecological processes and provide the foundation for extensive subsistence fisheries. Our findings suggest greater success in maintaining and restoring marine ecosystems may be achieved when they are managed to conserve surrogate species and preserve functional seascape connections. Incorporación de Especies Sustitutas y de Conectividad Marina para Mejorar los Resultados de Conservación  相似文献   

2.
Conservation of biologically diverse regions has thus far been accomplished largely through the establishment and maintenance of protected areas. Climate change is expected to shift climate space of many species outside existing reserve boundaries. We used climate-envelope models to examine shifts in climate space of 11 species that are representative of the Mount Hamilton Project area (MHPA) (California, U.S.A.), which includes areas within Alameda, Santa Clara, San Joaquin, Stanislaus, Merced, and San Benito counties and is in the state's Central Coast ecoregion. We used Marxan site-selection software to determine the minimum area required as climate changes to achieve a baseline conservation goal equal to 80% of existing climate space for all species in the MHPA through 2050 and 2100. Additionally, we assessed the costs associated with use of existing conservation strategies (land acquisition and management actions such as species translocation, monitoring, and captive breeding) necessary to meet current species-conservation goals as climate changes. Meeting conservation goals as climate changes through 2050 required an additional 256,000 ha (332%) of protected area, primarily to the south and west of the MHPA. Through 2050 the total cost of land acquisition and management was estimated at US$1.67-1.79 billion, or 139-149% of the cost of achieving the same conservation goals with no climate change. To maintain 80% of climate space through 2100 required nearly 380,000 additional hectares that would cost $2.46-2.62 billion, or 209-219% of the cost of achieving the same conservation goals with no climate change. Furthermore, maintaining 80% of existing climate space within California for 27% of the focal species was not possible by 2100 because climate space for these species did not exist in the state. The high costs of conserving species as the climate changes-that we found in an assessment of one conservation project-highlights the need for tools that will aid in iterative goal setting given the uncertainty of the effects of climate change and adaptive management that includes new conservation strategies and consideration of the long-term economic costs of conservation.  相似文献   

3.
Abstract: The search for generalities in ecology has often been thwarted by contingency and ecological complexity that limit the development of predictive rules. We present a set of concepts that we believe succinctly expresses some of the fundamental ideas in conservation biology. (1) Successful conservation management requires explicit goals and objectives. (2) The overall goal of biodiversity management will usually be to maintain or restore biodiversity, not to maximize species richness. (3) A holistic approach is needed to solve conservation problems. (4) Diverse approaches to management can provide diverse environmental conditions and mitigate risk. (5) Using nature's template is important for guiding conservation management, but it is not a panacea. (6) Focusing on causes not symptoms enhances efficacy and efficiency of conservation actions. (7) Every species and ecosystem is unique, to some degree. (8) Threshold responses are important but not ubiquitous. (9) Multiple stressors often exert critical effects on species and ecosystems. (10) Human values are variable and dynamic and significantly shape conservation efforts. We believe most conservation biologists will broadly agree these concepts are important. That said, an important part of the maturation of conservation biology as a discipline is constructive debate about additional or alternative concepts to those we have proposed here. Therefore, we have established a web‐based, online process for further discussion of the concepts outlined in this paper and developing additional ones.  相似文献   

4.
Coral reefs are threatened by human activities on both the land (e.g., deforestation) and the sea (e.g., overfishing). Most conservation planning for coral reefs focuses on removing threats in the sea, neglecting management actions on the land. A more integrated approach to coral reef conservation, inclusive of land-sea connections, requires an understanding of how and where terrestrial conservation actions influence reefs. We address this by developing a land-sea planning approach to inform fine-scale spatial management decisions and test it in Fiji. Our aim is to determine where the protection of forest can deliver the greatest return on investment for coral reef ecosystems. To assess the benefits of conservation to coral reefs, we estimate their relative condition as influenced by watershed-based pollution and fishing. We calculate the cost-effectiveness of protecting forest and find that investments deliver rapidly diminishing returns for improvements to relative reef condition. For example, protecting 2% of forest in one area is almost 500 times more beneficial than protecting 2% in another area, making prioritization essential. For the scenarios evaluated, relative coral reef condition could be improved by 8-58% if all remnant forest in Fiji were protected rather than deforested. Finally, we determine the priority of each coral reef for implementing a marine protected area when all remnant forest is protected for conservation. The general results will support decisions made by the Fiji Protected Area Committee as they establish a national protected area network that aims to protect 20% of the land and 30% of the inshore waters by 2020. Although challenges remain, we can inform conservation decisions around the globe by tackling the complex issues relevant to integrated land-sea planning.  相似文献   

5.
Ecological restoration has become an important strategy to conserve biodiversity and ecosystems services. To restore 15% of degraded ecosystems as stipulated by the Convention on Biological Diversity Aichi target 15, we developed a prioritization framework to identify potential priority sites for restoration in Mexico, a megadiverse country. We used the most current biological and environmental data on Mexico to assess areas of biological importance and restoration feasibility at national scale and engaged stakeholders and experts throughout the process. We integrated 8 criteria into 2 components (i.e., biological importance and restoration feasibility) in a spatial multicriteria analysis and generated 11 scenarios to test the effect of assigning different component weights. The priority restoration sites were distributed across all terrestrial ecosystems of Mexico; 64.1% were in degraded natural vegetation and 6% were in protected areas. Our results provide a spatial guide to where restoration could enhance the persistence of species of conservation concern and vulnerable ecosystems while maximizing the likelihood of restoration success. Such spatial prioritization is a first step in informing policy makers and restoration planners where to focus local and large‐scale restoration efforts, which should additionally incorporate social and monetary cost–benefit considerations.  相似文献   

6.
We examined the cost of conserving species as climate changes. We used a Maxent species distribution model to predict the ranges from 2000 to 2080 of 74 plant species endemic to the forests of Madagascar under 3 climate scenarios. We set a conservation target of achieving 10,000 ha of forest cover for each species and calculated the cost of achieving this target under each scenario. We interviewed managers of projects to restore native forests and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species, we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species' ranges, the overlap between species' ranges and existing or planned protected areas, and the overlap between species' ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha); avoidance of forest degradation (i.e., loss of biomass) in community-managed areas ($160-576/ha); avoidance of deforestation in unprotected areas ($252-1069/ha); and establishment of forest on nonforested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that although forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.  相似文献   

7.
Abstract: There has been a dramatic increase in the number of conservation organizations worldwide. It is now common for multiple organizations to operate in the same landscape in pursuit of different conservation goals. New objectives, such as maintenance of ecosystem services, will attract additional funding and new organizations to conservation. Systematic conservation planning helps in the design of spatially explicit management actions that optimally conserve multiple landscape features (e.g., species, ecosystems, or ecosystem services). But the methods used in its application implicitly assume that a single actor implements the optimal plan. We investigated how organizational behavior and conservation outcomes are affected by the presence of autonomous implementing organizations with different objectives. We used simulation models and game theory to explore how alternative behaviors (e.g., organizations acting independently or explicitly cooperating) affected an organization's ability to protect their feature of interest, and investigated how the distribution of features in the landscape influenced organizations’ attitudes toward cooperation. Features with highly correlated spatial distributions, although typically considered an opportunity for mutually beneficial conservation planning, can lead to organizational interactions that result in lower levels of protection. These detrimental outcomes can be avoided by organizations that cooperate when acquiring land. Nevertheless, for cooperative purchases to benefit both organizations’ objectives, each must forgo the protection of land parcels that they would consider to be of high conservation value. Transaction costs incurred during cooperation and the sources of conservation funding could facilitate or hinder cooperative behavior.  相似文献   

8.
Data on the location and extent of protected areas, ecosystems, and species’ distributions are essential for determining gaps in biodiversity protection and identifying future conservation priorities. However, these data sets always come with errors in the maps and associated metadata. Errors are often overlooked in conservation studies, despite their potential negative effects on the reported extent of protection of species and ecosystems. We used 3 case studies to illustrate the implications of 3 sources of errors in reporting progress toward conservation objectives: protected areas with unknown boundaries that are replaced by buffered centroids, propagation of multiple errors in spatial data, and incomplete protected‐area data sets. As of 2010, the frequency of protected areas with unknown boundaries in the World Database on Protected Areas (WDPA) caused the estimated extent of protection of 37.1% of the terrestrial Neotropical mammals to be overestimated by an average 402.8% and of 62.6% of species to be underestimated by an average 10.9%. Estimated level of protection of the world's coral reefs was 25% higher when using recent finer‐resolution data on coral reefs as opposed to globally available coarse‐resolution data. Accounting for additional data sets not yet incorporated into WDPA contributed up to 6.7% of additional protection to marine ecosystems in the Philippines. We suggest ways for data providers to reduce the errors in spatial and ancillary data and ways for data users to mitigate the effects of these errors on biodiversity assessments. Efectos de Errores y Vacíos en Conjuntos de Datos Espaciales sobre la Evaluación del Progreso de la Conservación  相似文献   

9.
Conserving coral reefs is critical for maintaining marine biodiversity, protecting coastlines, and supporting livelihoods in many coastal communities. Climate change threatens coral reefs globally, but researchers have identified a portfolio of coral reefs (bioclimatic units [BCUs]) that are relatively less exposed to climate impacts and strongly connected to other coral reef systems. These reefs provide a proactive opportunity to secure a long-term future for coral reefs under climate change. To help guide local management efforts, we quantified marine cumulative human impact (CHI) from climate, marine, and land pressures (2013 and from 2008 to 2013) in BCUs and across countries tasked with BCU management. Additionally, we created a management index based on common management measures and policies for each pressure source (climate, marine, and land) to identify a country's intent and commitment to effectively manage these pressures. Twenty-two countries (79%) had increases in CHI from 2008 to 2013. Climate change pressures had the highest proportional contribution to CHI across all reefs and in all but one country (Singapore), but 18 BCUs (35%) and nine countries containing BCUs (32%) had relatively high land and marine impacts. There was a significant positive relationship between climate impact and the climate management index across countries (R2 = 0.43, p = 0.02), potentially signifying that countries with greater climate impacts are more committed to managing them. However, this trend was driven by climate management intent in Fiji and Bangladesh. Our results can be used to guide future fine-scale analyses, national policies, and local management decisions, and our management indices reveal areas where management components can be improved. Cost-effectively managing local pressures (e.g., fishing and nutrients) in BCUs is essential for building a climate-ready future that benefits coral reefs and people.  相似文献   

10.
In the United States local land trusts preserve and conserve land to protect water quality and supply, farmlands, habitat for native plants and animals, areas of cultural or historical significance, and scenic views. We surveyed the 24 active, local land trusts in North Carolina (U.S.A.) to determine how they report progress toward attaining such conservation goals. Twenty-two land trusts responded to our survey. Of these, eight reported developing specific conservation goals for all of the properties they protect, five identified conservation targets on all properties, and two reported monitoring biological indicators on all of their protected properties. On the basis of these results, we believe most of the land trusts surveyed could not determine whether they were meeting conservation goals because most did not identify explicit, measurable goals and monitor progress toward them. Instead they reported success in terms of the amount of land protected and money raised. We think this is a lost opportunity for land trusts to build sound approaches to environmental management, engage the public, entice new donors, and attain funding for additional conservation activities. We propose conservation professionals help local land trusts adopt the Open Standards for the Practice of Conservation, a framework developed by a consortium of international conservation organizations, to develop conservation goals and measure whether the goals are achieved.  相似文献   

11.
Abstract: Conservation development projects combine real‐estate development with conservation of land and other natural resources. Thousands of such projects have been conducted in the United States and other countries through the involvement of private developers, landowners, land trusts, and government agencies. Previous research has demonstrated the potential value of conservation development for conserving species, ecological functions, and other resource values on private lands, especially when traditional sources of conservation funding are not available. Nevertheless, the aggregate extent and effects of conservation development were previously unknown. To address this gap, we estimated the extent and trends of conservation development in the United States and characterized its key attributes to understand its aggregate contribution to land‐conservation and growth‐management objectives. We interviewed representatives from land trusts, planning agencies, and development companies, searched the Internet for conservation development projects and programs, and compiled existing databases of conservation development projects. We collected data on 3884 projects encompassing 1.38 million ha. About 43% of the projects targeted the conservation of specific plant or animal species or ecological communities of conservation concern; 84% targeted the protection of native ecosystems representative of the project area; and 42% provided buffers to existing protected areas. The percentage of protected land in conservation development projects ranged from <40% to >99%, and the effects of these projects on natural resources differed widely. We estimate that conservation development projects have protected roughly 4 million ha of land in the United States and account for about 25% of private‐land conservation activity nationwide.  相似文献   

12.
Abstract: Protected areas are a cornerstone of conservation and have been designed largely around terrestrial features. Freshwater species and ecosystems are highly imperiled, but the effectiveness of existing protected areas in representing freshwater features is poorly known. Using the inland waters of Michigan as a test case, we quantified the coverage of four key freshwater features (wetlands, riparian zones, groundwater recharge, rare species) within conservation lands and compared these with representation of terrestrial features. Wetlands were included within protected areas more often than expected by chance, but riparian zones were underrepresented across all (GAP 1–3) protected lands, particularly for headwater streams and large rivers. Nevertheless, within strictly protected lands (GAP 1–2), riparian zones were highly represented because of the contribution of the national Wild and Scenic Rivers Program. Representation of areas of groundwater recharge was generally proportional to area of the reserve network within watersheds, although a recharge hotspot associated with some of Michigan's most valued rivers is almost entirely unprotected. Species representation in protected areas differed significantly among obligate aquatic, wetland, and terrestrial species, with representation generally highest for terrestrial species and lowest for aquatic species. Our results illustrate the need to further evaluate and address the representation of freshwater features within protected areas and the value of broadening gap analysis and other protected‐areas assessments to include key ecosystem processes that are requisite to long‐term conservation of species and ecosystems. We conclude that terrestrially oriented protected‐area networks provide a weak safety net for aquatic features, which means complementary planning and management for both freshwater and terrestrial conservation targets is needed.  相似文献   

13.
Abstract: It is thought that recovery of marine habitats from uncontrollable disturbance may be faster in marine reserves than in unprotected habitats. But which marine habitats should be protected, those areas at greatest risk or those at least risk? We first defined this problem mathematically for 2 alternate conservation objectives. We then analytically solved this problem for both objectives and determined under which conditions each of the different protection strategies was optimal. If the conservation objective was to maximize the chance of having at least 1 healthy site, then the best strategy was protection of the site at lowest risk. On the other hand, if the goal was to maximize the expected number of healthy sites, the optimal strategy was more complex. If protected sites were likely to spend a significant amount of time in a degraded state, then it was best to protect low‐risk sites. Alternatively, if most areas were generally healthy then, counterintuitively, it was best to protect sites at higher risk. We applied these strategies to a situation of cyclone disturbance of coral reefs on Australia's Great Barrier Reef. With regard to the risk of cyclone disturbance, the optimal reef to protect differed dramatically, depending on the expected speed of reef recovery of both protected and unprotected reefs. An adequate consideration of risk is fundamental to all conservation actions and can indicate surprising routes to conservation success.  相似文献   

14.
15.
Public agencies sometimes seek outside guidance when capacity to achieve their mission is limited. Through a cooperative agreement and collaborations with the U.S. National Park Service (NPS), we developed recommendations for a conservation program for migratory species. Although NPS manages ~36 million hectares of land and water in 401 units, there is no centralized program to conserve wild animals reliant on NPS units that also migrate hundreds to thousands of kilometers beyond parks. Migrations are imperiled by habitat destruction, unsustainable harvest, climate change, and other impediments. A successful program to counter these challenges requires public support, national and international outreach, and flourishing migrant populations. We recommended two initial steps. First, in the short term, launch or build on a suite of projects for high‐profile migratory species that can serve as proof to demonstrate the centrality of NPS units to conservation at different scales. Second, over the longer term, build new capacity to conserve migratory species. Capacity building will entail increasing the limited knowledge among park staff about how and where species or populations migrate, conditions that enable migration, and identifying species’ needs and resolving them both within and beyond parks. Building capacity will also require ensuring that park superintendents and staff at all levels support conservation beyond statutory borders. Until additional diverse stakeholders and a broader American public realize what can be lost and do more to protect it and engage more with land management agencies to implement actions that facilitate conservation, long distance migrations are increasingly likely to become phenomena of the past. Optimismo y Retos para la Conservación Científicamente Basada de Especies Migratorias Dentro y Fuera de Parques Nacionales de E.U.A.  相似文献   

16.
Globally, extensive marine areas important for biodiversity conservation and ecosystem functioning are undergoing exploration and extraction of oil and natural gas resources. Such operations are expanding to previously inaccessible deep waters and other frontier regions, while conservation‐related legislation and planning is often lacking. Conservation challenges arising from offshore hydrocarbon development are wide‐ranging. These challenges include threats to ecosystems and marine species from oil spills, negative impacts on native biodiversity from invasive species colonizing drilling infrastructure, and increased political conflicts that can delay conservation actions. With mounting offshore operations, conservationists need to urgently consider some possible opportunities that could be leveraged for conservation. Leveraging options, as part of multi‐billion dollar marine hydrocarbon operations, include the use of facilities and costly equipment of the deep and ultra‐deep hydrocarbon industry for deep‐sea conservation research and monitoring and establishing new conservation research, practice, and monitoring funds and environmental offsetting schemes. The conservation community, including conservation scientists, should become more involved in the earliest planning and exploration phases and remain involved throughout the operations so as to influence decision making and promote continuous monitoring of biodiversity and ecosystems. A prompt response by conservation professionals to offshore oil and gas developments can mitigate impacts of future decisions and actions of the industry and governments. New environmental decision support tools can be used to explicitly incorporate the impacts of hydrocarbon operations on biodiversity into marine spatial and conservation plans and thus allow for optimum trade‐offs among multiple objectives, costs, and risks.  相似文献   

17.
Abstract: Evaluation is important for judiciously allocating limited conservation resources and for improving conservation success through learning and strategy adjustment. We evaluated the application of systematic conservation planning goals and conservation gains from incentive‐based stewardship interventions on private land in the Cape Lowlands and Cape Floristic Region, South Africa. We collected spatial and nonspatial data (2003–2007) to determine the number of hectares of vegetation protected through voluntary contractual and legally nonbinding (informal) agreements with landowners; resources spent on these interventions; contribution of the agreements to 5‐ and 20‐year conservation goals for representation and persistence in the Cape Lowlands of species and ecosystems; and time and staff required to meet these goals. Conservation gains on private lands across the Cape Floristic Region were relatively high. In 5 years, 22,078 ha (27,800 ha of land) and 46,526 ha (90,000 ha of land) of native vegetation were protected through contracts and informal agreements, respectively. Informal agreements often were opportunity driven and cheaper and faster to execute than contracts. All contractual agreements in the Cape Lowlands were within areas of high conservation priority (identified through systematic conservation planning), which demonstrated the conservation plan's practical application and a high level of overlap between resource investment (approximately R1.14 million/year in the lowlands) and priority conservation areas. Nevertheless, conservation agreements met only 11% of 5‐year and 9% of 20‐year conservation goals for Cape Lowlands and have made only a moderate contribution to regional persistence of flora to date. Meeting the plan's conservation goals will take three to five times longer and many more staff members to maintain agreements than initially envisaged.  相似文献   

18.
Rudd MA 《Conservation biology》2011,25(6):1165-1175
The large investments needed if loss of biological diversity is to be stemmed will likely lead to increased public and political scrutiny of conservation strategies and the science underlying them. It is therefore crucial to understand the degree of consensus or divergence among scientists on core scientific perceptions and strategies most likely to achieve given objectives. I developed an internet survey designed to elucidate the opinions of conservation scientists. Conservation scientists (n =583) were unanimous (99.5%) in their view that a serious loss of biological diversity is likely, very likely, or virtually certain. Scientists' agreement that serious loss is very likely or virtually certain ranged from 72.8% for Western Europe to 90.9% for Southeast Asia. Tropical coral ecosystems were perceived as the most seriously affected by loss of biological diversity; 88.0% of respondents familiar with that ecosystem type agreed that a serious loss is very likely or virtually certain. With regard to conservation strategies, scientists most often viewed understanding how people and nature interact in certain contexts and the role of biological diversity in maintaining ecosystem function as their priorities. Protection of biological diversity for its cultural and spiritual values and because of its usefulness to humans were low priorities, which suggests that many scientists do not fully support the utilitarian concept of ecosystem services. Many scientists expressed a willingness to consider conservation triage, engage in active conservation interventions, and consider reframing conservation goals and measures of success for conservation of biological diversity in an era of climate change. Although some heterogeneity of opinion is evident, results of the survey show a clear consensus within the scientific community on core issues of the extent and geographic scope of loss of biological diversity and on elements that may contribute to successful conservation strategies in the future.  相似文献   

19.
Abstract: Hydrothermal vents are deep‐sea ecosystems that are almost exclusively known and explored by scientists rather than the general public. Continuing scientific discoveries arising from study of hydrothermal vents are concommitant with the increased number of scientific cruises visiting and sampling vent ecosystems. Through a bibliometric analysis, we assessed the scientific value of hydrothermal vents relative to two of the most well‐studied marine ecosystems, coral reefs and seagrass beds. Scientific literature on hydrothermal vents is abundant, of high impact, international, and interdisciplinary and is comparable in these regards with literature on coral reefs and seagrass beds. Scientists may affect hydrothermal vents because their activities are intense and spatially and temporally concentrated in these small systems. The potential for undesirable effects from scientific enterprise motivated the creation of a code of conduct for environmentally and scientifically benign use of hydrothermal vents for research. We surveyed scientists worldwide engaged in deep‐sea research and found that scientists were aware of the code of conduct and thought it was relevant to conservation, but they did not feel informed or confident about the respect other researchers have for the code. Although this code may serve as a reminder of scientists’ environmental responsibilities, conservation of particular vents (e.g., closures to human activity, specific human management) may effectively ensure sustainable use of vent ecosystems for all stakeholders.  相似文献   

20.
Many objectives motivate ecological restoration, including improving vegetation condition, increasing the range and abundance of threatened species, and improving species richness and diversity. Although models have been used to examine the outcomes of ecological restoration, few researchers have attempted to develop models to account for multiple, potentially competing objectives. We developed a combined state‐and‐transition, species‐distribution model to predict the effects of restoration actions on vegetation condition and extent, bird diversity, and the distribution of several bird species in southeastern Australian woodlands. The actions reflected several management objectives. We then validated the models against an independent data set and investigated how the best management decision might change when objectives were valued differently. We also used model results to identify effective restoration options for vegetation and bird species under a constrained budget. In the examples we evaluated, no one action (improving vegetation condition and extent, increasing bird diversity, or increasing the probability of occurrence for threatened species) provided the best outcome across all objectives. In agricultural lands, the optimal management actions for promoting the occurrence of the Brown Treecreeper (Climacteris picumnus), an iconic threatened species, resulted in little improvement in the extent of the vegetation and a high probability of decreased vegetation condition. This result highlights that the best management action in any situation depends on how much the different objectives are valued. In our example scenario, no management or weed control were most likely to be the best management options to satisfy multiple restoration objectives. Our approach to exploring trade‐offs in management outcomes through integrated modeling and structured decision‐support approaches has wide application for situations in which trade‐offs exist between competing conservation objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号