首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以2009—2013年每年10月份京津冀平原区的MODIS气溶胶光学厚度数据(AOD)为基础,建立时间序列插值模型,插值得到更加系统完整的AOD日数据;进一步以日数据为基础,运用算术平均值计算方法得到AOD月均值图像,并且提取京津冀平原区10个城市每年10月份的AOD月均值。研究结果表明:就整个研究区而言,在时间变化上,AOD值呈现逐渐增大的趋势,2012年10月达到最大,2013年10月略有减小;在空间分布上,西北部区域AOD值较小,东南部区域AOD值较大。就10个城市而言,在时间变化上,有5个城市AOD值呈现增大趋势,5个城市呈现波动特征;在空间分布上,西部的3个城市为AOD低值城市,东北部的4个城市为中值城市,东南部的3个城市为高值城市。  相似文献   

2.
西安是空气污染监控和防治有代表性的西部大型城市。研究了西安市及周边地区上空气溶胶光学厚度与PM10浓度的关系模型。利用2011—2012年MODIS卫星气溶胶光学厚度(AOD)遥感产品,通过数据匹配,利用地面气象观测站点的能见度数据和相对湿度数据对AOD产品进行垂直标高订正和湿度订正,2项订正显著提高了AOD和地面PM10浓度的相关性,相关系数从0.36提高到0.65,按季节分类统计和订正春至冬四季的相关系数分别为0.57、0.71、0.62和0.87,夏季和冬季的订正更为有效,可用性更高,这可能由于受到不同季节气溶胶来源和特征的影响。为研究中国西部大型城市,特别是西安市空气环境监测和区域联防联控提供了一种有效方法。  相似文献   

3.
2013年4月至2014年2月期间利用重庆市大气超级站的黑碳气溶胶(black carbon,BC)、气态污染物(SO2、NOx和O3)和颗粒物观测数据,分析了重庆市BC浓度的变化特征及与能见度、颗粒物以及SO2、NOx和O3气态污染物的相关性。观测期间BC年日均值为(4.86±2.37)μg/m3,浓度范围为1.32~11.54μg/m3。秋冬季BC日均浓度及相对偏差比春夏季高。BC和能见度呈负相关性。4个季度的BC与PM10、PM2.5和PM1日均值显著正相关,相关系数最小在夏季,最大在秋季。BC与O3日均值呈负相关性。BC与SO2,NOx日均值显著正相关,表明重庆市BC与SO2,NOx来源相近,即为燃煤和机动车尾气排放。  相似文献   

4.
为了探讨京津冀地区AOD和PM_(2.5)的变化特征及其相关性对NASA MODIS气溶胶光学厚度产品与京津冀地区PM_(2.5)质量浓度进行了比较分析。结果表明,AOD和PM_(2.5)均有明显的时间和空间分布特征且二者变化特征一致:张家口、承德、秦皇岛是观测期间2014年11月—2015年3月污染最轻的3个城市;京津冀南部AOD值和PM_(2.5)质量浓度明显高于北部。通过各市AOD和PM_(2.5)质量浓度的相关性分析,其最优模型均是非线性模型。根据各市最优模型得到的决定系数,邢台市、衡水市和石家庄市AOD和PM_(2.5)质量浓度具有比较好的相关性,北京市和天津市的相关性相对较差。  相似文献   

5.
PM2.5是表征空气质量最为重要的指标之一。近年来随着卫星遥感技术的迅速发展,通过气溶胶光学厚度(AOD)间接反演PM2.5已成为监测PM2.5的重要技术手段。从遥感反演PM2.5基本原理、遥感数据源、PM2.5时空分布计算方法以及发展趋势4个方面对PM2.5遥感反演技术的研究进展进行了综述。  相似文献   

6.
利用2000—2015年美国国家航空航天局的Aqua卫星MODIS 2级气溶胶产品MOD04数据,探讨了环渤海地区气溶胶光学厚度(AOD)的时空变化特征。结果表明:(1)环渤海地区的AOD年均值空间分布与海拔密切相关,高海拔地区AOD普遍较低,而低海拔地区AOD普遍较高。污染最严重的季节为夏季,AOD与空气质量指数(AQI)相关性较高。(2)16年来,环渤海地区AOD年均值为0.465~0.682,2012年最高,2001年最低,平均值为0.592,远高于全球陆上平均水平0.190。年内变化呈现双峰型,最高值出现在7月,最低值出现在12月。AOD年内变化与风速呈负相关关系。  相似文献   

7.
2008年冬、春季在宝鸡市4个不同功能区采集PM10样品,探讨了PM10中水溶性物质的化学组成、时空分布特征以及来源。结果表明,冬、春季PM10的平均质量浓度分别为(402±100)、(410±160)μg/m3,无明显季节差异,冬季以交通干道区的PM10浓度为最高,而春季则以商贸区的PM10浓度为最高;冬、春季PM10中水溶性有机碳(WSOC)浓度最高值均出现在商贸区,最低值则分别出现在背景点和交通干道区,水溶性无机碳(WSIC)浓度最高值分别出现在交通干道区和商贸区,最低值均出现在背景点;冬、春季PM10中所含大多数无机离子浓度不存在显著空间差异,但不同功能区PM10中无机离子所占质量分数差异较明显;冬、春季PM10中的水溶性物质质量浓度分别为207、151μg/m3,在PM10中所占质量分数分别为51%和40%,其中,冬、春季水溶性物质浓度最高的分别为居民区和商贸区;冬季PM10中WSOC浓度与SO24-、NO3-浓度有较好的相关性,说明冬季PM10中WSOC的主要组分为二次有机气溶胶,而春季PM10中WSOC浓度与SO42-、NO3-浓度的相关性相对较差,这是由于一次有机气溶胶对WSOC的贡献率较冬季显著增大;宝鸡市与北京市大气PM10浓度、PM10中的SO42-、NO3-、NH4+浓度最为接近;广州市大气PM10中的SO42-所占质量分数(14%)要高于北方城市(宝鸡市和北京市均为9%)。  相似文献   

8.
利用2007—2017年的MODIS/AQUA C6版MYD08_M3气溶胶产品数据资料,从时间和空间角度分析中国气溶胶光学厚度(AOD)变化特征。结果表明:(1)2007—2017年中国AOD年均值在0.40~0.55波动,平均值为0.48,11年间中国AOD年均值降低0.06;(2)中国AOD高值区集中在长江中下游、华北平原、珠江三角洲以及新疆的塔里木盆地,而川西、滇西北与青藏高原交界的地区为低值区,东北及内蒙古北部的AOD也相对较低。(3)地势对AOD分布具有一定影响,一般地,AOD高值区总体分布在低海拔地区,而AOD较低的区域主要位于高海拔区。(4)中国AOD表现出一定的季节变化特征,总体上呈春夏季高峰,秋季最低,冬季至次年春季逐步回升的趋势,此外采暖期内AOD整体上低于非采暖期。  相似文献   

9.
上海地区气溶胶特征及MODIS气溶胶产品在能见度中的应用   总被引:6,自引:0,他引:6  
利用气象站点能见度的历史资料和美国国家宇航局的MODIS卫星遥感手段获取10 km×10 km分辨率的气溶胶光学厚度(AOD)资料,建立二者的季节平均关系,得到了上海地区季节变化的气溶胶标高,并利用标高数据和AOD的季节分布,反演出上海地区季节变化的区域能见度分布,研究了近地层大气气溶胶与地面能见度的关系,分析了上海地区AOD的特征及能见度的时空分布特征.结果显示:上海地区冬春季平均能见度较差,外环线以内能见度在10 km以下;低能见度中心分布明显.  相似文献   

10.
西安是空气污染监控和防治有代表性的西部大型城市。研究了西安市及周边地区上空气溶胶光学厚度与PM10浓度的关系模型。利用2011—2012年MODIS卫星气溶胶光学厚度(AOD)遥感产品,通过数据匹配,利用地面气象观测站点的能见度数据和相对湿度数据对AOD产品进行垂直标高订正和湿度订正,2项订正显著提高了AOD和地面PM10浓度的相关性,相关系数从0.36提高到0.65,按季节分类统计和订正春至冬四季的相关系数分别为0.57、0.71、0.62和0.87,夏季和冬季的订正更为有效,可用性更高,这可能由于受到不同季节气溶胶来源和特征的影响。为研究中国西部大型城市,特别是西安市空气环境监测和区域联防联控提供了一种有效方法。  相似文献   

11.
卫星遥感反演气溶胶光学厚度(AOT)已被广泛地应用于地面PM10遥感监测。为遥感监测长江三角洲地区PM10,利用2013年的MODIS/Terra AOT产品,考虑研究区36个空气质量监测站点的风速、温度、湿度和边界层高度等气象条件,构建了基于MODIS AOT产品估算PM10的模型。利用17个空气质量监测站点数据对模型进行散点拟合验证,结果表明,模型估算精度较高,春夏秋冬4个季节PM10质量浓度的模型估算值与地面监测值的相关系数R2值分别为0.72、0.76、0.69和0.72。利用模型估算的长时间序列PM10时空分布数据进行时空变化特征分析,结果表明:2000—2013年研究区PM10质量浓度呈增长趋势,月均增长量为0.077μg/m3,最大值出现在2月,为(107.2±22.0)μg/m3,最小值出现在8月,为(40.5±12.0)μg/m3;研究区PM10质量浓度空间分布差异显著,南部低,北部高,高值主要出现在由上海、杭州和南京构成的三角形区域的城市群中,而低值主要出现在南部远离城市的森林区域。结果表明,基于MODIS/Terra AOT产品和地面观测气象数据估算PM10的多元线性回归模型能较好地应用于区域PM10监测。  相似文献   

12.
长沙地区雾霾特征及影响因子分析   总被引:2,自引:0,他引:2  
根据长沙地区1970—2012年气象观测资料及环境监测数据,对近43年长沙雾霾特征及影响因子进行了分析。结果表明,长沙地区雾的年际变化具有显著的倒"U"型特征,霾整体上呈上升趋势;雾霾天气主要集中在秋冬季节,春夏季节较少;从空间分布来看,望城区(县)和宁乡县雾霾天气最多,浏阳市次之,长沙市区最少。在一次持续性雾霾天气过程中(10.2~10.12),相对湿度、PM2.5质量浓度与能见度呈现显著负相关,说明PM2.5质量浓度和相对湿度是雾霾天气形成的首要影响因子。  相似文献   

13.
通过对西安市雾霾时空分布特征的分析,为认识雾霾成因和采取有效的治理措施提供理论依据。利用2013—2015年西安市13个监测站的雾霾天气污染物监测资料和中国环境监测总站的月空气质量状况报告,采用统计方法分析西安市雾霾天气的时空分布特征。结果发现:时间上,西安市雾霾天气呈现明显的季节性变化规律,持续时间较长,雾霾在冬、春季交际时最严重,其中11月至翌年3月期间PM2.5空气质量指数为严重污染;空间上,西安市北部区域雾霾污染程度比南部区域严重,西部区域雾霾污染程度比东部区域严重,市区雾霾污染程度比郊区严重。通过相关分析,进一步揭示不同污染物对PM2.5的影响程度,说明PM2.5与PM10存在较强的正相关关系,与O3呈负相关关系。  相似文献   

14.
为了深入了解不同源排放大气颗粒物对北京市大气环境的影响,从而提出更有效的防污染源控制对策,减少污染,对2014年夏季7月和2015年冬季1月北京市采集的108个样品应用扫描电镜-能谱技术进行研究。结果表明硫钙颗粒和碳质颗粒在冬夏季雾霾天气均大量出现。夏季清洁天气下PM_(2.5)以上扬尘颗粒数量大于冬季。夏季雾霾天气下有机碳及含硫颗粒快速增加,冬季雾霾天气下由于燃煤供暖因素的存在,有机碳及含硫颗粒等特殊颗粒平均浓度较清洁天气增幅最高达145倍,PM1以下总颗粒数增长高达700%。夏季雾霾天气PM0.5~1颗粒数量较清洁天气增长1.6倍,冬季增长8倍。不同季节雾霾天气主导污染颗粒不同,应采取有针对性管控措施。  相似文献   

15.
福州市东郊大气气溶胶物理特性及其来源分析   总被引:1,自引:0,他引:1  
利用GRIMM180环境颗粒物监测仪观测了2012年12月至2013年11月福州市东郊气溶胶数浓度和质量浓度,分析了该地区气溶胶粒子的主要物理特征。结果表明,福州市东郊气溶胶数浓度和质量浓度都有着明显的季节变化特征,冬季最高,夏季最低;与京津冀、长三角和西部大城市相比,福州市东郊气溶胶质量浓度较低,空气质量较好。从PM_(2.5)在PM10中所占比例来看,PM_(2.5)是影响福州市东郊空气质量最主要的因子。在冬季气溶胶数浓度日变化基本呈双峰分布,早晨和傍晚分别出现峰值;夏季呈单峰分布,峰值出现在午后。利用后向轨迹HYSPLIT-4模式,经过聚类分析得到,在春季、秋季和冬季福州市气团输送来源主要是北方内陆和福州本地及邻近地区;而在夏季海洋是气团的主要输送来源。  相似文献   

16.
利用Himawari-8卫星的AHI成像仪于2016年3月下旬对中国东北进行秸秆焚烧火点监测,结合气溶胶光学厚度(AOD)与地面空气质量数据分析了秸秆焚烧对空气质量的影响。结果显示,研究期间共监测到秸秆焚烧火点425次。齐齐哈尔市、哈尔滨市、呼伦贝尔市、黑河市、绥化市和大庆市火点数较多,分别为116、75、52、50、41、20次。火点数早晚少、中午多。秸秆焚烧对空气质量有很大影响,火点及其下风向的空气质量指数(AQI)和AOD往往较高。秸秆焚烧产生的主要空气污染物是CO和PM10,但它们的峰值滞后于秸秆焚烧的时间。  相似文献   

17.
以北京市近12年空气污染指数(API)为数据基础,首先分析了2001—2012年北京市API、污染等级、首要污染物的变化特征以及污染天数年度值、季度值、月值的变化特征;然后根据API转换得到PM10质量浓度,对其变化特征进行分析;最后采用相关系数法分析了北京市API、PM10质量浓度与气象因素的相关性。结果表明,北京市近12年空气污染天数有明显下降趋势,首要污染物主要为可吸入颗粒物;空气污染主要集中于春季,优良天气主要集中于夏季;PM10质量浓度年度最大值出现在2006年,季度最大、最小值分别出现在春、夏季,月值最大、最小值分别出现在3月和7月;气象因素与空气污染关系密切,气温、相对湿度、降雨量与污染天数和PM10质量浓度均呈显著负相关,而风速与污染天数和PM10质量浓度则呈显著正相关。  相似文献   

18.
利用成都市2013年6月至2014年5月的PM10和PM2.5浓度监测数据,分析大气颗粒物污染特征,并探讨其与气温、相对湿度、降雨、风向、风速等气象因子的关联性。结果表明:成都市大气PM2.5污染较严重;PM10和PM2.5浓度及超标率均表现为冬季秋季春季夏季,秋季和冬季为大气颗粒物污染高发期;PM2.5对PM10贡献显著;气温超过10℃时,PM10和PM2.5最高浓度大体随气温升高而降低;相对湿度为40%~80%时,PM10和PM2.5浓度随相对湿度增加而升高;相对湿度超过80%时,易发生降雨,PM10和PM2.5浓度降低;降雨对PM10的清除量高于PM2.5,但降雨后PM10和PM2.5浓度较快回升;PM10和PM2.5浓度在偏西风下高于其他风向;PM10主要受局地源影响,而PM2.5主要受西北方向上的外来源影响。  相似文献   

19.
选取金华、衢州、温州、丽水、宁波、杭州6个城市开展PM2.5手工标准方法和自动监测法比对实验,并用相关性和相对偏差两个指标对比对结果进行分析和评价。结果表明:(1)2013年6个采样城市采集的PM2.5手工和自动监测值均具有较好的相关性(相关系数均在0.95以上),截距均在-0.010~0.010mg/m3,但斜率相差较大(衢州和丽水在0.90以上;金华、温州和杭州在0.85~0.90;宁波在0.80以下)。(2)2013年6个城市采集的PM2.5手工和自动监测值的相对偏差为-34.2%~36.5%;PM2.5手工和自动监测值相对偏差在±15%范围内的数据占总数据量的82.6%;负偏差数据占总数据量的80.0%。(3)PM2.5手工标准方法和自动监测法的比对差异与地域、季节和PM2.5浓度等条件有关。总体上,不同地区PM2.5手工与自动监测值相对偏差绝对值(︱RD︱)年平均值为衢州丽水金华宁波温州杭州;春季PM2.5手工与自动监测值︱RD︱平均值高于夏季,秋季高于冬季;各采样城市PM2.5手工和自动监测值︱RD︱平均值在高质量浓度(PM2.5手工监测值(ρ1)0.150mg/m3)下最小,中质量浓度(0.050≤ρ1≤0.150mg/m3)下最大,低质量浓度(ρ10.050mg/m3)下介于两者之间。  相似文献   

20.
为了解雾霾过程中细颗粒物的组分与来源,采用单颗粒气溶胶质谱(SPAMS)法,于2015年12月在西安城市运动公园对雾霾过程进行连续观测。根据细颗粒物的质谱特征,将其化学组分分为10类,为有机碳(OC)、元素碳(EC)、混合碳(ECOC)、左旋葡聚糖(LEV)、矿尘(MD)、重金属(HM)、富钾颗粒物(RK)、富钾钠颗粒物(RNa K)、富铵颗粒物(RNH+4)以及其他颗粒物。将本次雾霾过程分为5个阶段,各个阶段占比最大的化学组分均为OC、EC、ECOC;在雾霾生长阶段,RK、RNa K及RNH+4增长明显。将细颗粒物来源分为8类:机动车(36.3%)、燃煤(22.5%)、扬尘(7.1%)、生物质燃烧(5.1%)、工业(7.3%)、餐饮(0.5%)、二次合成(7.9%)和其他来源(13.3%)。结果表明,机动车和燃煤是本次雾霾的主要来源,二次合成对雾霾生长和消退有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号