共查询到19条相似文献,搜索用时 92 毫秒
1.
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物. 相似文献
2.
针对传统垃圾渗滤液生物处理TN去除率低、投加碳源成本高的问题,采用UASB1-A/O-UASB2(单级上流式厌氧污泥床+缺氧/好氧+后置上流式厌氧污泥床)工艺处理实际垃圾渗滤液,实现NH4+-N和TN的同步深度脱除,并且定量解析了A/O反应器实现并维持稳定短程硝化的影响因素. 结果表明:以V(垃圾渗滤液)∶V(生活污水)为1∶5的混合液作为进水,其ρ(CODCr)、ρ(TN)和ρ(NH4+-N)分别为1 700~1 800、660~700和650~680 mg/L,最终出水CODCr、TN和NH4+-N去除率均在95%以上,出水ρ(TN)为38 mg/L,满足GB 16889—2008《生活垃圾填埋场污染控制标准》的排放要求. 在好氧反应器中,FA(游离氨)与FNA(游离亚硝酸)对NOB(硝化细菌)的联合抑制作用是实现NO2--N积累率稳定在80%以上的主要原因,而产生的NO2--N和NO3--N可在UASB2中以难降解的有机物为碳源,通过反硝化途径被去除. 研究显示,组合系统可实现对TN的深度去除. 相似文献
3.
垃圾填埋时间达5 a以上便产生“中老龄”垃圾渗滤液,由于这类废水氨氮浓度较高,无机离子含量高,C/N较低,是目前普遍认为的难降解废水。总结了该类垃圾渗滤液的水质特点,介绍了短程硝化-反硝化、短程硝化-厌氧氨氧化新型生物脱氮工艺的原理与优势,可以在提高脱氮效率的同时可显著降低运行成本。此外,对新型生物脱氮技术应用于垃圾渗滤液脱氮处理的国内外现状进行了总结,目前,国内将其应用于中晚期渗滤液处理方面的研究还很少,但具有很大的潜力,因此,对处理效果、最佳运行条件和反应机理等方面都有待深入研究。 相似文献
4.
5.
本研究以低碳氮比废水为基质,厌氧氨氧化污泥优配普通活性污泥为接种物,在新型气升式内循环反应器中培育同步短程硝化-厌氧氨氧化-短程反硝化颗粒污泥.结果表明,经过225 d的连续运行可培育成熟稳定的颗粒污泥,其总氮去除率高达91.4%.相较于絮状污泥,颗粒污泥中厌氧氨氧化活性显著增加,并且厌氧氨氧化活性在4个脱氮过程中活性最大,其次是短程硝化,且短程反硝化比活性是亚硝酸盐还原比活性的2.1倍.高通量测序结果表明,颗粒污泥中短程硝化和厌氧氨氧化的优势菌分别为Nitrosomonas和Candidatus_Brocadia,并相较于絮状污泥,它们的丰度分别增加至0.70%和0.57%.Thauera可能是颗粒污泥中潜在的短程反硝化优势菌,其丰度达到0.26%.RT-qPCR分析结果表明,相比接种阶段,短程硝化的功能基因amoA和hao转录水平分别增加了3.5和1.5倍,厌氧氨氧化功能基因hzsA转录水平增加了2.1倍,短程反硝化过程中napA和narG转录水平增加的倍数之和是nirK和nirS的倍数之和的4.8倍.本研究结果将为处理低碳氮比废水提供新的思路. 相似文献
6.
短程硝化-厌氧氨氧化(PNA)与短程反硝化-厌氧氨氧化(PDA)工艺的脱氮性能会受到许多参数的影响.在综合考虑各种参数的基础上,对2种工艺的脱氮性能进行预测,并识别关键参数,能够为其实际工程应用提供优化目标.解决上述问题时,实验方法耗时耗力,而传统数学模型难以处理非线性关系.因此采用机器学习技术,构建的随机森林(RF)机器学习模型对2个工艺的出水总氮(TN)浓度进行了高精度预测,对PNA和PDA工艺出水TN浓度预测结果的决定系数(R2)分别为0.728、0.812.SHAP方法能够较好地解释模型的预测过程,并对各参数进行了重要性排序.在PNA工艺中,出水TN浓度主要受到进水TN浓度及COD浓度的影响.在PDA工艺中,出水TN浓度首先受进水TN浓度及氮负荷的约束.在此基础上,进水COD浓度作为另-重要因素影响着工艺的出水TN浓度.进水COD浓度在2个工艺中的共同重要性表明,2种工艺在实际应用时需要预先做好污废水中碳源的管理与分配,预分离与应用策略非常重要.该研究采用机器学习模型为PNA与PDA工艺脱氮性能的预测提供了方法指导,并基于SHAP的模型解释为2种工艺在实际应用时的关键参数识别与优化提供了选择依据. 相似文献
7.
厌氧条件下,微生物将NH~+_4-N氧化和Fe~(3+)还原的反应称为厌氧铁氨氧化(Feammox).试验以处理垃圾渗滤液的厌氧氨氧化污泥(ANAMMOX)为接种污泥驯化Feammox污泥,研究了不同NH~+_4-N及Fe~(3+)浓度对Feammox系统的影响,并采用扫描电镜(SEM)分析了Feammox系统不同运行阶段的污泥形态特征.结果表明:在厌氧序批式反应器中,在常温条件下控制进水NH~+_4-N浓度为50 mg·L~(-1)、pH在7.4~7.6之间,经过88 d厌氧富集培养后NH~+_4-N最大转化率达到52.73%,最大转化量为28.37 mg·L~(-1),出水Fe~(2+)浓度随着运行时间的增加逐渐增加,最高浓度为2.87 mg·L~(-1).高浓度NH~+_4-N(400 mg·L~(-1))和Fe~(3+)(500 mg·L~(-1))条件下,氨氮转化量分别达到了40.69 mg·L~(-1)和29.23 mg·L~(-1),说明高进水基质条件下仍然有Feammox反应发生.低浓度NH~+_4-N(100 mg·L~(-1))和Fe~(3+)(50 mg·L~(-1))条件下,NH~+_4-N转化量与Fe~(2+)生成量的线性关系较强,R~2分别为0.86544和0.86034.通过SEM分析可得,Feammox污泥表面附着有不规则矿物,这些矿物沉积在微生物细胞表面阻碍传质,从而降低微生物代谢效率. 相似文献
8.
以氨氮浓度较高的垃圾渗滤液为处理对象,分析研究了不同供氧策略对SBBR反应器实现短程硝化厌氧氨氧化的影响.在4种不同供氧策略(a、b、c和d的总供氧时间分别为16h、12h、12h和8h;好氧/厌氧交替频率分别为4h/2h、3h/3h、2h/2h和2h/4h)下同步启动反应器,保持各反应器内环境温度为(30.0±0.5)℃,并控制曝气阶段溶解氧(DO)浓度为(1.2±0.1)mg·L-1.实验结果表明,反应器内的微生物经过124d的驯化和增殖,具有一定的脱氮能力,但是效果不同,其中, 相似文献
9.
本研究从某垃圾填埋场计划将现有的垃圾渗滤液短程硝化反硝化脱氮工艺改造为短程硝化反硝化耦合厌氧氨氧化工艺的实际需求入手,以短程硝化反硝化污泥作为接种污泥,在上流式厌氧污泥床反应器(UASB)中完成厌氧氨氧化启动.探究反应器运行中的脱氮效能、氮容积负荷和氮去除负荷情况,并利用16S rRNA基因序列分析技术对长期运行条件下系统中微生物群落结构演替进行分析.结果表明,反应器经历了149 d后成功启动厌氧氨氧化,稳定运行后的进水总氮容积负荷达到4 000. 00 mg·(L·d)-1,总氮容积平均去除速率达到3 885. 76 mg·(L·d)-1,系统氨氮和亚硝酸盐氮的平均去除率均超过了95%.运行第250 d时,系统的生物多样性减少,门水平上厌氧氨氧化主要菌群Planctomycetes的丰度达到了54. 94%;属水平上Candidatus Kuenenia为主要菌属,其相对丰度达到了49. 66%.结果证明,在短程硝化反硝化基础上耦合厌氧氨氧化实现垃圾渗滤液深度处理的升级改造工艺具有可行性. 相似文献
10.
采用好氧移动床生物膜反应器(MBBR)对经过厌氧脱碳处理的垃圾渗滤液进行了深度短程硝化研究,考察了在中温(25℃)条件下DO浓度、pH值、C/N等因素对氨氮去除效果和短程硝化效果的影响.结果表明,在进水氨氮浓度为400 mg·L-1,HRT为24 h情况下,当控制DO为2 mg·L-1、pH值在8左右和C/N小于3时,氨氮去除率能达到70%以上,亚硝酸盐氮的积累率高达90%.间歇试验证明了该生物膜反应器中亚硝化菌的数量和活性要远高于硝化菌.该移动床生物膜工艺可以选择性固定和积累氨氧化细菌,从而实现较高的氨氮去除率和稳定的亚硝酸盐氮积累率. 相似文献
11.
垃圾焚烧发电厂垃圾渗滤液处理工艺的研究 总被引:5,自引:0,他引:5
通过对垃圾焚烧厂和垃圾填埋场垃圾渗滤液的特点比较 ,确定UASB反应器 CASS反应器复合工艺处理垃圾焚烧厂渗滤液 ,确定其最佳处理参数。结果表明 ,通过该系统处理后 ,CODCr总去除率达 98 1 % ,NH+ 4 N总去除率达96 3% ,取得较好的去除有机物和脱氮效果 相似文献
12.
采用两级混合床反应器(分别命名为HybridⅠ和HybridⅡ),对垃圾渗滤液中的COD和氨氮去除进行了试验研究,混合床由颗粒悬浮载体和固定组合软性填料相结合.试验以反应器的DO、pH、ORP、SS等作为在线控制参数,研究了该反应器在固定温度(28~33℃)、不同进水负荷、DO和pH值下的运行效果,最后在Hybrid反应器的优化控制条件(DOHybridⅠ=(2.0±0.2)mg·L-1,DOHybridⅡ=(1.5±0.2)mg·L-1,pHHybridⅠ=8.0±0.2,pHHybridⅡ=8.5±0.2,周期进水量为50L)下,实现了COD的高效去除以及氨氮的短程硝化去除.垃圾渗滤液进水COD和氨氮分别为2300~5700mg·L-1和580~1150mg·L-1,两级混合床反应器工艺的COD和氨氮的去除率分别为93%和95%左右,总氮(TN)的去除率在82%以上.连续运行过程中HybridⅠ和HybridⅡ反应器的COD最大去除速率分别为1.91kg·m-3·d-1和0.75kg·m-3·d-1,氨氮亚硝化速率最大分别为0.54kg·m-3·d-1和0.33kg·m-3·d-1.运行结果表明,该工艺耐冲击负荷强,处理效果稳定. 相似文献
13.
Xu Zhengyong Yang Zhaohui Zeng Guangming Xiao Yong Deng Jiuhua 《Frontiers of Environmental Science & Engineering in China》2007,1(1):43-48
The nitrogen removal mechanism was studied and analyzed when treating the ammonium-rich landfill leachate by a set of sequencing
batch biofilm reactors (SBBRs), which was designed independently. At the liquid temperature of (32 ± 0.4)°C, and after a 58-days
domestication period and a 33-days stabilization period, the efficiency of ammonium removal in the SBBR went up to 95%. Highly
frequent intermittent aeration suppressed the activity of nitratebacteria, and also eliminated the influence on the activity
of anaerobic ammonium oxidation (ANAMMOX) bacteria and nitritebacteria. This influence was caused by the accumulation of nitrous
acid and the undulation of pH. During the aeration stage, the concentration of dissolved oxygen was controlled at 1.2–1.4
mg/L. The nitritebacteria became dominant and nitrite accumulated gradually. During the anoxic stage, along with the concentration
debasement of the dissolved oxygen, ANAMMOX bacteria became dominant; then, the nitrite that was accumulated in the aeration
stage was wiped off with ammonium simultaneously.
Translated from Acta Scientiae Circumstantiae, 2006, 26(1): 55–60 [译自: 环境科学学报] 相似文献
14.
本文采用厌氧反应器UASB+膜生物反应器MBR+纳滤工艺处理垃圾填埋场废水,设计处理能力为100m3/d,在进水CODs:和BODs分别为10 000 mg/L和5 000 mg/L时,经处理后,出水CODc:和BODs分别为60mg/L和20mg/L,其去除率分别为99.4%和99.6%,且出水稳定,达到了<北京市水... 相似文献
15.
采用\"UASB+A/O+UF+NF\"工艺处理生活垃圾焚烧厂渗滤液,工程规模为150 m3/d,工程总投资500万元,运行成本为25元/t;污泥处理工艺过程为:(剩余污泥+厌氧污泥)浓缩→脱水→焚烧。工程设计进水水质指标为ρ(COD)=50000 mg/L,ρ(BOD5)=25 000 mg/L,ρ(NH3-N)=600 mg/L,ρ(TP)=15 mg/L,ρ(SS)=9000 mg/L,出水主要水质指标为ρ(COD)≤50 mg/L,ρ(BOD5)≤15 mg/L,ρ(NH3-N)≤10 mg/L,ρ(TP)≤0.27 mg/L,ρ(SS)≤4 mg/L,补充到电厂循环冷却水中回用,不但实现了垃圾焚烧污水零排放,还有着较好的经济和环境效益。 相似文献
16.
采用“两级UASB-缺氧-好氧系统”处理高COD与高NH4+-N的城市生活垃圾渗滤液.180天的试验结果表明:UASB1(一级UASB)与UASB2(二级UASB)最大COD去除速率分别为12.5、8.5kg·m-3·d-1,UASB1的NOx--N的最大去除速率为3.0kg·m-3·d-1.系统COD去除率为80%~92%,出水COD为800~1500mg·L-1.原渗滤液的NH4+-N为1100~2000mg·L-1,A/O工艺的最大NH4+-N去除速率为0.68kg·m-3·d-1;在17~30℃,通过NO2--N累积率为90%~99%的短程硝化,NH4+-N的去除率在99%左右,出水NH4+-N小于15mg·L-1.回流处理水和二沉池回流污泥中的NOx--N分别在UASB1和A/O工艺的缺氧段实现完全反硝化,使系统无机氮TIN去除率达80%~92%.同时高效的反硝化为硝化提供了充足的碱度,使A/O工艺pH大于8.5,维持较高的游离氨浓度,结果表明,高游离氨(FA)是导致短程硝化的主要因素.以pH作为控制参数调控A/O工艺的曝气时间,可以有效的抑制亚硝酸盐氧化菌(NOB)的增长,实现种群优化和稳定的短程硝化. 相似文献
17.
Nitrogen removal via nitrite from municipal landfill leachate 总被引:2,自引:0,他引:2
A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB), an anoxic/aerobic (A/O) reactor and a sequencingbatch reactor (SBR), was used to treat landfill leachate. During operation, denitrification and methanogenesis took place simultaneouslyin the first stage UASB, and the e uent chemical oxygen demand (COD) was further removed in the second stage UASB. Then thedenitrification of nitrite and nitrate in the returned sludge by using the residual COD was accomplished in the A/O reactor, and ammoniawas removed via nitrite in it. Last but not least, the residual ammonia was removed in SBR as well as nitrite and nitrate which wereproduced by nitrification. The results over 120 d (60 d for phase I and 60 d for phase II) were as follows: when the total nitrogen(TN) concentration of influent leachate was about 2500 mg/L and the ammonia nitrogen concentration was about 2000 mg/L, the shortcutnitrification with 85%–90% nitrite accumulation was achieved stably in the A/O reactor. The TN and ammonia nitrogen removale ciencies of the system were 98% and 97%, respectively. The residual ammonia, nitrite and nitrate produced during nitrification inthe A/O reactor could be washed out almost completely in SBR. The TN and ammonia nitrogen concentrations of final e uent wereabout 39 mg/L and 12 mg/L, respectively. 相似文献
18.
19.
常规UASB反应器与内循环UASB反应器在处理垃圾渗滤液中的应用比较 总被引:1,自引:0,他引:1
以垃圾渗滤原液或者经过稀释后的垃液废水为处理对象,在不经过任何预处理情况下由常规UASB反应器与内循环UASB反应器直接进行厌氧处理,通过对两组试验的对比及试验结果的分析,比较了两组反应器在整体处理效果、污泥颗粒化以及抗冲击负荷能力等方面的优劣,得出内循环UASB反应器对底物的处理更充分,具有更强的处理能力、更高的工作效率,其出水更适宜于好氧法做进一步处理. 相似文献