首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
原位臭氧氧化污泥减量工艺的运行效能   总被引:1,自引:0,他引:1  
采用ASBR/SBR原位臭氧污泥减量工艺,重点研究了原位臭氧氧化对SBR段污泥产率和出水水质的影响。两个相同的ASBR/SBR组合工艺同时运行,每隔3个周期向臭氧投加组SBR的曝气阶段原位间歇投加臭氧,臭氧投加量为0.027 g O3/g MLSS,连续运行40 d;对照组不投加臭氧作为对比。结果表明,原位臭氧氧化实现污泥减量约43.9%,臭氧投加组SBR段平均污泥产率系数为0.1447 g SS/g SCOD,而对照组为0.2580 g SS/g SCOD,投加组没有惰性污泥的累积,并且污泥沉淀性能得到改善。原位臭氧氧化对出水水质影响不大,投加组与对照组相比,臭氧投加3周期后的出水COD、NH4+-N、TN和TP平均值分别为47.8、0.76、14.1和6.4 mg/L,去除率分别下降了4%、2%、3%和7.7%,其中COD、NH4+-N和TN均能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。  相似文献   

2.
针对传统污泥减量化工艺中氮磷难以达标的问题,以ASBR/SBR组合工艺为基础辅助臭氧氧化预处理,提出了臭氧耦合ASBR(anaerobic sequencing batch reactor)/SBR(sequencing batch reactor)工艺实现污泥减量与氮磷协同控制,系统评价了该工艺对污泥减量和脱氮除磷效果。结果表明,未投加臭氧时,SBR的污泥表观产率系数Yobs(即降解每克COD产生的悬浮固体的量)均值为0.228 g·g~(-1),投加臭氧(投量为0.074 g·g~(-1))后Yobs均值降低至0.132 g·g~(-1),降低了42%;臭氧投加前后出水COD、NH+4-N、TN和PO3-4-P去除率变化不大,分别在91%、95.2%、74.7%和49.4%左右;投加臭氧使得SOUR(specific oxygen uptake rate)(即每小时每克污泥所需氧气量)由2.8 mg·(g·h)~(-1)降低至2.4 mg·(g·h)~(-1),表明臭氧氧化并未明显抑制生物活性;此外,投加臭氧使得MLVSS/MLSS由0.85降低至0.83,表明实验过程中未发现惰性物质的累积。实验结果表明,臭氧耦合ASBR/SBR工艺在实现污泥减量和控制氮磷方面具有一定的工程应用价值。  相似文献   

3.
在SBR中试系统中,采用较高声能密度较短时间的超声波处理剩余污泥后回流至系统连续运行20 d的方式进行污泥减量,通过分析测定系统MLSS、累计排泥量以及系统出水水质指标,考察了系统污泥减量效果及污泥回流对系统污水处理效果的影响。结果表明,对SBR系统2/3的剩余污泥用声能密度为1 W/mL的超声波预处理6 min后回流至SBR系统。SBR系统最终需处置的污泥量减少了45.64%,获得了理想的污泥减量效果。污泥回流后SBR系统对SS、COD、TN以及NH4+-N的去除效果均无明显变化,仅出水TP含量略高于对照的SBR,出水水质仍能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准。  相似文献   

4.
将厌氧序批式间歇反应器(ASBR)和序批式间歇反应器(SBR)串联组成污泥减量新工艺,着重探讨了对SBR段进行原位臭氧投加时,臭氧氧化作用对系统硝化和反硝化能力的影响,并以不投加作为对照。结果表明,将臭氧原位投加到ASBR—SBR组合工艺的SBR段,臭氧投加量为0.027g(以每克MLSS计),每隔3个周期再次投加、连续运行40d,试验组SBR段臭氧投加当期出水COD去除率为86%,比对照组下降了9百分点,但臭氧氧化细胞内大量有机物进入混合液中,为反硝化作用提供了外加碳源,对污泥反硝化能力的提高起到了一定的促进作用;试验组部分硝化细菌由于臭氧的强氧化作用而失去活性,但是随着剩余污泥量的减少,系统的污泥龄延长,有利于硝化细菌的生长,使得系统的硝化能力基本未受影响;试验组臭氧投加当期SBR段出水NO2--N平均浓度比对照组的高18.9%,但经过3个周期的运行后,其SBR段出水NO2--N平均质量浓度降低至7.57mg/L,基本与对照组持平;试验组臭氧投加当期SBR段出水NO3--N的平均浓度高于对照组,但经过3个周期的运行后,试验组出水NO3--N平均浓度低于对照组;试验组臭氧投加当期SBR段出水TN和对照组的出水TN平均去除率分别为65%和75%,但试验组再经过3个周期的运行后,出水TN平均去除率可以达到72%。可见,原位投加臭氧并未对SBR段的硝化和反硝化能力产生明显的影响。  相似文献   

5.
采用厌氧流化床(AFB)-序批式反应器(SBR)工艺处理蓝皮制革工业废水。分别考察了水力停留时间(HRT)、容积负荷对厌氧流化床以及曝气时间、污泥浓度、溶解氧浓度对SBR反应器处理效果的影响。试验结果表明,AFB将实验废水的BOD_5/COD(B/C)值由0.19~0.26提高至0.35~0.42,有效提高了其可生化性;在进水COD浓度为1 700~1 890 mg/L、HRT为1 d、容积负荷为1.792 kg COD/(m~3·d)时,COD去除率达65.2%~68.5%,且具有良好的抗冲击负荷能力。SBR在进水COD浓度为628~712 mg/L、污泥浓度为2.9 g/L、曝气时间为10 h、溶解氧浓度为2 mg/L工况下,COD去除率达87.6%,NH_3-N去除率达93.6%,处理后出水水质符合污水综合排放标准(GB 8978-1996)中的一级标准要求。  相似文献   

6.
朱毅  李晓霞  王俊  李春 《环境工程学报》2012,6(9):2995-3000
针对大豆深加工高浓度有机废水厌氧出水的特点,采用移动床生物膜反应器-沉淀池-厌氧池(MBBR-SA)工艺进行处理,重点考察了其COD去除、脱氮以及污泥减量化的性能。处理前厌氧出水水质参数为COD 1 350~1 851 mg/L、TN 45~73 mg/L和TP 35~55 mg/L。结果表明,经过70 d的运行,在最佳水力停留时间(HRT)1.68 d与最佳回流比0.75条件下,出水平均COD、TN和NH4+-N浓度分别为91.5、12.4和11.4 mg/L,分别达到了《城镇污水处理厂污染物排放标准》二级标准、二级标准和一级B标准,其平均去除率分别为96.0%、87.4%和88.3%;该工艺未排放剩余污泥,其表观污泥产率为0.13,比MBBR降低了43.5%,具有明显的污泥减量化特性。  相似文献   

7.
采用缺氧/好氧膜生物反应器(A/O-MBR)处理合成的生活污水,考察了投加不同浓度的聚合氯化铝(PAC)对该工艺在除磷效能及运行稳定性方面的影响。结果表明,投加PAC可以有效降低出水TP的浓度;在投加量为150 mg/L时,TP的去除率达到最优,为90.1%,出水浓度维持0.48 mg/L左右,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级A标准。投加一定量的PAC可以有效提高微生物的活性;此外,可以降低污泥絮体的Zeta电位,增大污泥絮体的粒径,降低胞外聚合物(EPS)中多糖的浓度,进而有效延缓膜污染的速率。  相似文献   

8.
SBR串联生物强化稳定塘处理养猪废水工艺优化   总被引:1,自引:0,他引:1  
针对亚热带地区某规模化养猪场SBR处理低碳氮比(C/N)沼液出水不达标的问题,研究了以乙酸钠为速效碳源时其投加量对SBR运行效果的影响,并采用4级串联生物强化稳定塘工艺对SBR出水进行强化处理。结果表明:当乙酸钠投加量为400 mg·L~(-1)时,SBR工艺对COD、氨氮和总氮的平均去除率分别从16%±1%、25%±4%和14%±1%提高到了32%±1%、55%±2%、27%±4%;串联生物强化稳定塘(BSPs)工艺对COD、氨氮、总氮和总磷的平均去除率达到了65%±2%、80%±4%、79%±3%和83%±4%,出水平均浓度分别为(155±5)、(67±2)、(89±2)和(6±1) mg·L~(-1),均可满足《畜禽养殖业污染物排放标准》(GB 18596-2001)的要求。以生物膜和双穗雀稗构成的前2级生物强化稳定塘系统对COD、氨氮、总氮和总磷的消纳量分别占整个串联稳定塘系统消纳量的57%、50%、51%和81%。进一步分析可知,串联生物强化稳定塘工艺对养猪废水主要污染物(COD、氨氮、总氮、总磷)的去除效果显著,采用此技术可实现废水的达标排放。  相似文献   

9.
双循环两相生物处理工艺的中试研究   总被引:1,自引:0,他引:1  
采用双循环两相生物处理工艺(BICT)系统对城市污水处理厂出水进行中试研究,探讨了中试试验工况下BICT系统对污染物的去除率.结果表明,独立膜反应区的设置消除了生物硝化与除磷的关联性,从而可通过在SBR反应器缩短泥龄来提高系统的除磷效率;系统中污泥转移的实现,使系统在反应阶段能保证较高的污泥浓度,从而提高污泥的释磷效果,为系统处理能力的提升提供较大潜力.在适宜的试验工况下,进水COD容积负荷小于1.00 kg/(m3·d)时,系统COD平均去除率80%左右,出水COD保持在60 mg/L左右;总氮容积负荷小于0.4 kg/(m3·d)时,总氮平均去除率在80%左右,出水总氮低于15 mg/L;总磷容积负荷3~35 g/(m3·d)时,总磷去除率稳定在90%以上,出水总磷低于0.5 mg/L;出水指标均可达到<城镇污水处理厂污染物排放标准>(GB 18918-2002)中的一级标准.  相似文献   

10.
分析了A/O-膜生物反应器(MBR)工艺在某污水处理厂出水提标改造中的应用可行性.结果表明,利用A/O-MBR工艺对某污水处理厂出水进行提标改造后,除TP外,出水COD、NH+4-N、TN指标符合《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准,应对出水再采用一定的强化除磷措施(如投加化学除磷药剂...  相似文献   

11.
基于多段进水工艺原理,结合污泥自回流好氧生物脱氮反应器结构特征开发的新型分段进水脱氮反应器无需硝化液和污泥回流系统,大大简化了系统配置和操作难度。通过调整进水C/N和进水投配比初步研究了该反应器的去污性能。结果表明,新型分段进水脱氮反应器启动完成(21d)后,在进水COD质量浓度为155~455mg/L的条件下,平均出水COD为(39.6±7.3)mg/L,低于《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准,且出水COD的变异系数为0.18,出水水质较为稳定;TN的去除主要受进水C/N的影响,NH+4-N的去除主要与最后一级的进水投配比有关。本实验的5种运行工况是以出水NH+4-N达标的前提下尽量去除TN为原则进行进水投配比设计的,在5种运行工况下,TN和NH+4-N去除性能良好,最高分别可达76%和89%。采用新型分段进水脱氮反应器处理浙江省实际生活污水(碱度与总凯氏氮平均比值为7.70)时基本无需调节碱度。  相似文献   

12.
为解析代谢解偶联剂的污泥减量性能及机理,选用毒副作用较低的代谢解偶联剂四氯水杨酰苯胺(TCS),考察其对序批式活性污泥反应器(SBR)长期运行过程中污泥产量及运行参数的影响。结果表明,投加一定量的TCS具有较好的污泥减量化作用,添加TCS前和停用后,SBR内各指标变化均不明显,说明TCS对SBR运行没有明显影响。当SBR中污泥混合液悬浮固体(MLSS)为2 200mg/L,TCS添加量为1.6mg/L时,平均污泥产率系数由0.521mg/mg降至0.314mg/mg,污泥产量减少39.73%。TCS对有机物的去除基本没有影响,COD去除率仅下降3.03百分点,但比耗氧速率(SOUR)增加73.73%,比三磷酸腺苷(SATP)合成量减少23.90%,胞内贮存物(PHAs)含量平均增加42.28%,脱氧核糖核酸(DNA)含量无明显变化。因此,适量添加TCS不会造成细胞溶胞,但能使胞内代谢增加,使氧化磷酸化解偶联,使生物合成量减少,从而实现污泥减量化。  相似文献   

13.
为提升解偶联剂的污泥减量效果并缓解其对微生物的影响,在序批式活性污泥反应器(SBR)中添加不同浓度的解偶联剂(双香豆素)和电气石,分析两者协同作用对SBR系统中活性污泥产量及性能的影响。研究结果表明,当双香豆素投加量由10mg/L增加到40mg/L,污泥的表观产率由0.19降至0.15,下降约20%,污泥减量作用明显增强,但COD去除率由76.7%下降至76.3%,SBR内的亚硝酸盐氮积累量增加,TN去除率由87.5%降至80.3%,污泥沉降性能有所降低,污泥活性有所提高。40mg/L双香豆素与100g电气石协同作用下,SBR内污泥的表观产率降至0.13,COD去除率提高至82.6%,SBR内亚硝酸盐氮积累量显著降低,TN去除率可达88.9%,污泥沉降性能及污泥活性均有所提高。电气石可以改善高浓度双香豆素所导致的负面影响,不会提高系统污泥产率。  相似文献   

14.
序批式活性污泥工艺生物脱氮现场试验   总被引:1,自引:0,他引:1  
针对某污水处理厂序批式活性污泥工艺(SBR)升级改造中遇到的问题,进行了现场试验。分别研究了前置反硝化、前后同时反硝化工艺处理效果。结果表明:(1)SBR处理城市污水,COD、NH+4-N能够达到《城镇污水处理厂污染物排放标准》(GB18918—2002)一级A标准,但不能保证TN达标,其中碳源不足是关键因素。(2)补充葡萄糖作为外加碳源,可以保证TN达标。葡萄糖最优投加量为125mg/L,此时TN的去除率为76.1~83.8%,出水TN稳定在11~12mg/L。  相似文献   

15.
采用高效集成生物反应器(HCR)处理生活污水,考察了水力停留时间、污泥回流比和射流量对污染物去除效果的影响.结果表明,在水力停留时间为90 min,污泥回流比为120%和射流量为2.1 m3/h的最佳运行条件下,HCR对COD、BOD5、NH3-N和SS的去除率分别为82.3%、93.5%、86.3%和93.1%,出水COD、BOD5、NH3-N和SS均达到<城镇污水处理厂污染物排放标准>(GB 18918-2002)中一级B标准.  相似文献   

16.
潘志彦  方芳  杨晔 《环境污染与防治》2006,28(12):941-943,946
对加压活性污泥法处理有机中间体废水进行了研究,主要考察了停留时间(HRT)、污泥浓度(MLSS)和反应压力等条件对COD去除率的影响.有机中间体废水经铁炭预处理后,COD从原来的8 000 mg/L降到5 000 mg/L左右,BOD5/COD由原来的0.20升高到0.40左右.当反应器内废水混合后COD 2 000 mg/L时,在反应压力0.10 MPa、污泥质量浓度3~5 g/L、停留时间8~10 h条件下,出水COD小于600 mg/L,COD去除率大于70%;出水经混凝沉淀处理后COD小于400 mg/L,可以达到<污水综合排放标准>(GB 8978-1996)三级标准.与常规的活性污泥处理方法相比,加压活性污泥法具有处理速度快、降解效率高和容积负荷大等优点.  相似文献   

17.
对序批式反应器 (SBR)用于牛场污水的处理进行了试验研究 ,主要研究了三个水力停留时间 (HRT)和有机负荷率对污染物去除率、出水水质和污泥特性的影响。试验结果表明 ,对 10 0 0 0mg/LCOD牛场污水 ,使用 1dHRT ,相应有机负荷率为 10gCOD/L·d时 ,混合出水COD、TS、VS、TKN和TN的去除率分别为 45 %、2 1.4%、34 .2 %、5 3.2 %和 2 2 .2 % ,上清液出水的分别为 80 .2 %、6 3.4%、6 6 .2 %、75 %和 38.3% ;两种出水的SCOD和NH3 N去除率相同 ,分别为 5 0 .0 %和 76 .5 %。经SBR处理后 ,污泥的沉降浓缩性能也有了比较明显的改善。  相似文献   

18.
进行了厌氧折流板反应器-垂直潜流人工湿地(ABR-VSFCW)、复合厌氧反应器-水平潜流人工湿地(HAR-HSFCW)、膨胀颗粒污泥床-人工快速渗滤系统(EGSB-CRI)3种组合工艺处理农村生活污水的研究。结果表明,在温度为10~29℃,进水COD为325.3~386.5 mg/L的条件下,3种组合工艺对COD均有较高的处理效果,当厌氧段HRT大于16 h时,3种组合工艺出水COD浓度均达到了我国《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B标准;EGSB-CRI、HAR-HSFCW对TP的去除效果较好,出水TP浓度均达到了我国《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B标准,且显著优于ABR-VSFCW,ABR-VSFCW出水TP浓度达到了二级标准;ABR-VSFCW、HAR-HSFCW、EGSB-CRI出水NH+4-N浓度分别为25.24~42.20、29.59~41.60和9.80~15.35 mg/L,其出水NH+4-N浓度达到了我国《城镇污水处理厂污染物排放标准》(GB 18918-2002)二级标准;3种组合工艺对TN的去除效果无明显差异,去除率仅为23.9%~46.4%。因此,EGSB-CRI对农村生活污水的处理效果最好,HAR-HSFCW次之,ABR-VSFCW较差。  相似文献   

19.
SBR法处理城镇污水中DO控制   总被引:1,自引:1,他引:0  
采用SBR装置以不同曝气量处理城镇污水,寻求SBR在运行过程中的最佳DO范围。进水温度为20±5℃,pH为7±0.5,设置SBR的运行参数为瞬时进水、搅拌30 min、曝气240 min、沉淀60 min、排水30 min,在出水水质满足城镇污水处理厂污染物排放标准(GB18918-2002)一级A标准的前提下,控制不同的曝气量,分析曝气池中DO浓度对污水中COD、总磷、氨氮去除效果的影响。结果表明:过高的DO不能缩短采用SBR进行回用处理的时间,曝气段DO为0.8~1.5mg/L时比DO在2.5~4.5 mg/L运行更稳定,这有利于降低能耗。  相似文献   

20.
UASB/SBR/氧化塘工艺处理养猪废水   总被引:1,自引:0,他引:1  
针对养猪废水COD高、NH3-N高、SS高的特点.采用UASB/SBR/氧化塘作为主体处理工艺.UASB反应器采用消化污泥接种,SBR反应器采用好氧活性污泥接种,经过近2个月的运行,对COD、BOD5、NH3-N、SS、TP的去除率分别达到93.7%、97.4%、92.4%、97.3%、96.4%,出水各项指标都达到<畜禽养殖业污染物排放标准>(GB 18596-2001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号