首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lingfeng Kong  Qi Li 《Marine Biology》2009,156(7):1507-1515
Coelomactra antiquata is a commercially important bivalve species, but has been suffering from severe population decline due to over-exploitation and the deterioration of environmental conditions. Previous genetic survey of C. antiquata conducted with allozymes combined with morphology revealed high levels of genetic differentiation between northern and southern populations which suggests a cryptic species might exist in C. antiquata. To test this hypothesis, amplified fragment length polymorphisms (AFLPs) and 16S rRNA gene sequence were used to re-evaluate the spatial genetic structure of six populations of C. antiquata along the coast of China. Both genetic markers display a sharp genetic break between the four northern populations (northern lineage) and two southern population (southern lineage). Large numbers of private alleles (AFLP) were found within the northern or southern populations and a deep divergence of about 6.5% in 16S rRNA gene sequence between the northern and southern lineages suggests the occurrence of potential cryptic or sibling species of C. antiquata. Applying previously published rates of mutation, divergence between the two lineages is estimated to have occurred approximately 3 million years ago and may be due to allopatric isolation during the middle Pliocene times. While no genetic differentiation was found within the northern or southern populations in both AFLP and 16S mtDNA markers, the results indicate that the northern and southern lineage should be managed separately and any translocation between the two areas should be avoided.  相似文献   

2.
Phascolosoma perlucens is one of the most common intertidal sipunculan species and has been considered a circumtropical cosmopolitan taxon due to the presence of a long-lived larva. To verify whether P. perlucens is a true cosmopolitan species or a complex of cryptic forms, we examined the population structure and demographics of 56 putative P. perlucens individuals from 13 localities throughout the tropics. Analysis of two mitochondrial markers, cytochrome c oxidase subunit I and 16S rRNA, suggests high levels of genetic differentiation between distantly located populations of P. perlucens. At least four different lineages identified morphologically as P. perlucens were distinguished. These lineages are likewise supported by phylogenetic analysis of the two mitochondrial markers and by the haplotype network analysis. Our results suggest that P. perlucens is a case of overconservative taxonomy, rejecting the alleged cosmopolitanism of P. perlucens. However, cryptic speciation also exists in some areas, including a possible case of geminate species across the Isthmus of Panama.  相似文献   

3.
 Species of the toadfish genus Opsanus are increasingly used as experimental organisms in biomedicine and evolutionary/ecological physiology. Despite their importance, little is known of the phylogenetic relationships among Opsanus species. DNA sequence data for portions of the mitochondrial 12S rRNA, cytochrome oxidase I and cytochrome b genes were generated and analyzed from the four recognized Opsanus species and three outgroup taxa. Results of these analyses indicate an evolutionarily rapid divergence of three lineages within the genus. O. beta and O. pardus were resolved within the same lineage, and could not be distinguished with these mitochondrial sequence data. These data and paleoclimatic theory support a hypothesis of speciation based on the formation of allopatric populations during periods of elevated water temperature in the northern Caribbean. Received: 6 July 1999 / Accepted: 15 March 2000  相似文献   

4.
The phylogeographic patterns among populations of Mesopodopsis slabberi (Crustacea, Mysida), an ecological important mysid species of marine and estuarine habitats, were analysed by means of DNA sequencing of a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) and the 16S ribosomal RNA genes. Samples of M. slabberi collected from five Atlantic and two Western Mediterranean populations were investigated. Very high levels of within-population molecular diversity were observed in all samples (mean h=0.807 and π=0.0083), with exception of the Mediterranean Ebro population which contained only one haplotype. Differentiation among populations was high, and a clear phylogeographic break was observed between the Atlantic and Mediterranean populations. Moreover, a strong differentiation was detected between both populations in the Western Mediterranean Sea (Alicante and Ebro delta), while two divergent lineages occurred in sympatry within the Atlantic Mondego estuary. The high congruence between both the COI and 16S rRNA sequence data, the reciprocal monophyly of the different mitochondrial clades and the levels of nucleotide divergence between them suggest the presence of a complex of cryptic species within M. slabberi. Estimations of divergence time between the different mitochondrial lineages indicate that a split occurred during the late Miocene/early Pliocene. Such a divergence could be concordant with vicariant events during sea-level drops within the Mediterranean region at that time. However, within the Mediterranean Sea, the potential of divergence through ecological diversification cannot be ruled out.  相似文献   

5.
We conducted a phylogeographic study of the meiofaunal nemertean Ototyphlonemertes parmula, an apparent species complex from the littoral zone of coarse-grained beaches, using a 494-bp fragment of the mitochondrial cytochrome oxidase 3 gene (cox3). Six populations from the Gulf and Atlantic coasts of Florida, two from New England, and one from the Caribbean were sampled in March and August 2005. Three major lineages were identified, separated by cox3 sequence divergence of 16–18%, with partially overlapping ranges. Tests for hybridization using ISSR markers detected nuclear gene exchange within but not between the major mitochondrial lineages, indicating the presence of cryptic species. One lineage dominating the Atlantic coast of Florida shows no evidence of geographic structuring. Another lineage shows a phylogenetic break between the Atlantic and Gulf coasts, suggesting that unsuitable habitat may act as a barrier to dispersal. Long-distance migration is evidenced by shared haplotypes between Florida and the eastern Caribbean. Overall, the widespread distribution of individual haplotypes and lack of structuring within geographic regions contrast with O. parmula’s strongly sediment-bound lifestyle. We speculate that dispersal of adults by storms and/or sediment transport may be more important than few and potentially short-lived planktonic larvae to explain geographic diversity in O. parmula and may be important for meiofauna in general.  相似文献   

6.
We investigated the phylogenetic relationships among different size groups of the pelagic microcopepod Oncaea venusta Philippi, 1843, by comparing the patterns of genetic variation of specimens collected at five locations of the Indo-West Pacific Ocean. Phylogenetic analyses were based on sequence data obtained from two DNA markers: A 310 bp fragment of the mitochondrial cytochrome b (cyt b) gene and a 480 bp fragment of the nuclear internal transcribed spacer 1 (ITS1). The cyt b sequences showed a much higher level of variation than those from ITS1, but the conclusion from both genes was concordant. Four genetic clades could be differentiated. A small- and a large-size group were unambiguously assigned to two distinct clades or lineages. Unexpectedly, the medium-sized individuals could be divided into another two different genetic clades. All four lineages were supported by high bootstrap values. The high levels of sequence divergence under sympatric conditions indicated that at least the two main groups, the large and the small one, may be assigned to different species. For the medium-size group additional morphological studies and more sensitive nuclear markers are required to clarify their taxonomic status.  相似文献   

7.
The high frequency of speciation events associated with species flocks (i.e., radiations of closely related species) provides invaluable insight into the speciation process. Investigations of the speciation process in the marine environment are rare, and therefore, the genetic analysis of the rockfish genus Sebastes, considered an ancient marine species flock, provides an opportunity to investigate this process in the sea. Using both mitochondrial and nuclear markers, we analyzed five closely related species within the rockfish subgenus Sebastosomus. Our goal was to understand the evolutionary history and genetic relationships among species within this group and to provide evidence of recent speciation events within the subgenus. In the genetic analysis of the subgenus, we found different stages of the speciation process, with greater genetic divergences among three of the five species, evidence of recent divergence between two of the five species, Sebastes entomelas and S. mystinus, and significant genetic divergence between two lineages within S. mystinus revealing a signature of incipient speciation. We also found frequency differences of the two S. mystinus lineages among sample locations and found no evidence of introgression between the lineages at the location where both coexist. Although Sebastes is an example of an ancient species flock, this study provides evidence of ongoing speciation within the genus and reveals stages of this process from incipient to distinct species.  相似文献   

8.
The study describes the diversity of actinobacteria isolated from the marine sponge Iotrochota sp. collected in the South China Sea. Species and natural product diversity of isolates were analyzed, including screening for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetase (NRPS), and 16S rRNA gene restriction fragment length polymorphism (RFLP). PKS and NRPS sequences were detected in more than half of the isolates and the different “PKS-I–PKS-II–NRPS” combinations in different isolates belonging to the same species indicated a potential natural product diversity and divergent genetic evolution. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to genera Streptomyces, Cellulosimicrobium, and Nocardiopsis. The majority of the strains tested belonged to the genus Streptomyces and one of them may be a new species. To our knowledge, this is the first report of a bacterium classified as Cellulosimicrobium sp. isolated from a marine sponge. Key Laboratory of Marine Bio-recourses Sustainable Utilization (LMB-CAS), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People’s Republic of China.  相似文献   

9.
Three different molecular markers (i.e. seven allozyme loci, two nuclear gene loci and, mtCOI DNA sequences) were used to assess the genetic structure of the vent gastropod Lepetodrilus elevatus collected from three vent fields along the East Pacific Rise (13°N, 9°50′N and 17°S). While allozymes and nuclear loci suggested a strong stepping-stone pattern, a multivariate analysis performed on allozymic frequencies showed the presence of two distinct evolutionary lineages: the first situated in the north from 13°N to 9°50′N and the second in the south from 9°50′N to 17°S. The analysis of mitochondrial DNA sequences confirmed the separation of L. elevatus into two distinct clades with a divergence of 6.5%, which is consistent with the interspecific level of sequence variation in other vent species. A divergence time of 6–14 Mya was estimated between the two clades from previous clock calibrations. Our results suggest that these taxa followed an allopatric speciation between the northern and southern parts of the EPR with a recent demographic expansion of the southern clade to the north and a subsequent secondary contact (clade hybridisation). This speciation was probably reinforced by a habitat specialisation of the two cryptic species because the southern clade was mainly found associated with mussel-dominated communities and the northern clade with tubeworm-dominated communities. However, the analysis of shell morphology failed to separate the two cryptic species based on this sole criterion although they differed from Lepetodrilus elevatus galriftensis (Galapagos population) by a higher shell elevation. Within each clade, genetic differentiation was not related to the distance across populations and could be within vent field as important as between fields. While both clades appear to be in expansion since their speciation, significant excesses in heterozygotes suggest a very recent and local bottleneck at 17°S, probably due to massive site extinction in this region.  相似文献   

10.
 Mud crabs of the family Panopeidae are common organisms in coastal soft-bottom, vegetated, rubble, and oyster-bed communities along the temperate and tropical coastlines of the American continent. Similar morphology among many species renders their distinction and classification difficult. Here, we present phylogenies of western Atlantic Panopeidae based on DNA sequences of the mitochondrial large subunit rRNA (16S; 529 basepairs) and cytochrome oxidase I (COI; 640 basepairs) genes. Results suggest that the speciose genera Panopeus and Eurypanopeus are not monophyletic and that their taxonomy does not accurately reflect evolutionary partitions. In two cases (P. herbstii complex and E. depressus and allies), the molecular findings strongly support sister-species relationships that differ from previous morphology-based assumptions. We suggest that convergence or morphological stasis are responsible for the phenotypic similarities between divergent evolutionary lineages. Received: 23 July 1999 / Accepted: 5 April 2000  相似文献   

11.
Phylogenetic diversity of Archaea in prawn farm sediment   总被引:2,自引:0,他引:2  
The structure and diversity of the Archaea collected from prawn farm sediment were investigated for the first time. A partial 16S ribosomal DNA library was constructed with Archaea-specific primers. Subsequently, 80 randomly selected archaeal clones from the library were analyzed by restriction fragment length polymorphism (RFLP), and resulted in 50 different RFLP patterns. Sequence analysis of representatives from each unique RFLP type revealed high diversity in the archaeal populations, and the majority of archaeal clones were either members of novel lineages or most closely related to uncultured clones. In the phylogenetic analysis, the archaeal clones could be grouped into discrete phylogenetic lineages within the two kingdoms Crenarchaeota and Euryarchaeota. Euryarchaeota dominated in our archaeal library, with up to 72.2% of the total clones, and Crenarchaeota represented 27.8%. Of all the Euryarchaeota clones, three clones (5.6%) were affiliated with Methanosarcinales, four clones (7.4%) were related to Methanomicrobiales, three clones (5.6%) were related to Halobacterium (with 93% similarity), and the remaining clones (81.5%) were related to those uncultured Euryarchaeota in the aquatic sediment ecosystem. None of the crenarchaeal clones were associated with any known cultured lineages. The selective dispersal of the archaeal population indicates that their ecological niches are associated with environmental characteristics. Novel phylotypes of Archaea would expand our understanding of the genetic diversity of Archaea in aquatic sediment systems and would be significant in the phylogenetic study of Archaea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

12.
Surveys of genetic variation within cosmopolitan marine species often uncover deep divergences, indicating historical separation and potentially cryptic speciation. Based on broad geographic (coastal eastern North America, Gulf of Mexico, western Africa, Australia, and Hawaii) and temporal sampling (1991–2003), mitochondrial (control region [CR] and cytochrome oxidase I [COI]) and nuclear gene (lactate dehydrogenase A intron 6 [LDHA6]) variation among 76 individuals was used to test for cryptic speciation in the scalloped hammerhead, Sphyrna lewini (Griffith and Smith). CR and COI gene trees confirmed previous evidence of divergence between Atlantic and Indo-Pacific scalloped hammerhead populations; populations were reciprocally monophyletic. However, the between-basin divergence recorded in the mtDNA genome was not reflected in nuclear gene phylogenies; alleles for LDHA6 were shared between ocean basins, and Atlantic and Indo-Pacific populations were not reciprocally monophyletic. Unexpectedly, CR, COI, and LDHA6 gene trees recovered a deep phylogenetic partition within the Atlantic samples. For mtDNA haplotypes, which segregated by basin, average genetic distances were higher among Atlantic haplotypes (CR: D HKY=0.036, COI: D GTR=0.016) than among Indo-Pacific haplotypes (CR: D HKY=0.010, COI: D GTR=0.006) and approximated divergences between basins for CR (D HKY=0.036 within Atlantic; D HKY=0.042 between basins). Vertebral counts for eight specimens representing divergent lineages from the western north Atlantic were consistent with the genetic data. Coexistence of discrete lineages in the Atlantic, complete disequilibrium between nuclear and mitochondrial alleles within lineages and concordant partitions in genetic and morphological characters indicates reproductive isolation and thus the occurrence of a cryptic species of scalloped hammerhead in the western north Atlantic. Effective management of large coastal shark species should incorporate this important discovery and the inference from sampling that the cryptic scalloped hammerhead is less abundant than S. lewini, making it potentially more susceptible to fishery pressure.  相似文献   

13.
The phylogenetic relationships of the Antarctic krill Euphausia superba, the key species in the Antarctic food web, and other Antarctic and sub-Antarctic cuphausiids have been investigated using the 16S ribosomal mitochondrial gene. The phylogenetic reconstructions indicated that the Antarctic species form a monophyletic clade separated by the non-Antarctic species. The results revealed a large genetic divergence between the Antarctic (E. superba and E. crystallorophias) and sub-Antarctic species (E. vallentini). The time of separation between these species, estimated from the molecular data, is around 20 million years ago, which is comparable with the geological time of the formation of a circum-Antarctic water circulation and the Antarctic Polar Frontal Zone. The euphausiid molecular phylogeny therefore represents evidence for vicariant speciation.  相似文献   

14.
Odontasteridae (Asteroidea: Echinodermata) (Verrill in Am J Sci, 1899) is placed within Valvatida, a derived assemblage of sea stars. Odontasterids are found in the Southern, Atlantic, and Pacific Oceans and are concentrated in high southern latitudes. To date, the phylogenetic and evolutionary history of Odontasteridae as a whole has not been rigorously examined. We conducted molecular and morphological phylogenetic analyses of Odontasteridae to assess the interrelationships among and within recognized genera. We used mitochondrial 16S and cytochrome c oxidase subunit I molecular markers and 29 external morphological characters in an attempt to reconstruct the evolutionary history of the group. Generally, our results indicate that traditionally used external skeletal characters are not representative of phylogenetic history of Odontasteridae. We can conclude that species present in high latitudes in the Southern Hemisphere (i.e., Southern Ocean) are the most derived taxa. Additionally, mtDNA data suggest unrecognized lineages of odontasterids are present in high southern latitudes. A new species Odontaster cynthiae sp. nov. is described from the Galapagos Islands.  相似文献   

15.
Marine nematodes, which play an important role in many ecosystems, include a number of apparently cosmopolitan taxa that exhibit broad biogeographic ranges even though there is no obvious dispersal phase in their lifecycle. In this study, standard taxonomic approaches to marine nematode identification in conjunction with multivariate statistical analysis of morphometric data were compared with molecular techniques. Specimens of the marine nematode Terschellingia longicaudata that had been identified by their morphological features were investigated from a range of localities (East and West Atlantic, Bahrain, Malaysia) and habitats (estuarine, intertidal, subtidal) using molecular approaches based on the amplification and sequencing of the small subunit ribosomal RNA (18S rRNA). The study revealed that the majority of the morphologically defined T. longicaudata specimens share a single 18S rRNA sequence and apparently belong to a single taxon distributed from the British Isles to Malaysia. In addition, 18S rRNA analysis also revealed two additional sequences. One of these sequences was found in both the British Isles and Mexico, the other was recorded only from British waters. Individuals collected in Bahrain and identified from their morphology as T. longicaudata had two highly divergent 18S rRNA sequences. Separate morphological and morphometric approaches to identification of specimens from the same sites that had been formalin-preserved did not support evidence of multiple genotypes revealed previously by molecular analysis. Current taxonomy based on morphological characters detected using light-microscopy may be unable to discriminate possible species complexes. Biodiversity of marine nematodes may often be underestimated due to the presence of morphologically cryptic species complexes. High-throughput techniques such as DNA barcoding would aid in species identification but may require thorough analysis of multiple nuclear and mitochondrial molecular markers.  相似文献   

16.
The kuruma shrimp Penaeus japonicus is widely distributed throughout the Indo-West Pacific. Two morphologically similar varieties, I and II, are recognized from the South China Sea. The two varieties are characterized by different color banding patterns on the carapace, but there are no distinct differences in morphometric traits between them based on measurement of 13 characters. Sequence data and restriction profiles of the mitochondrial genes reveal that these two varieties represent distinct clades, with sequence divergences of about 1% (473 bp) in 16S rRNA, 6–7% (504 bp) in cytochrome oxidase I, and 16–19% (470 bp) in the control region. Analysis of amplified fragment length polymorphism confirms that the two varieties are genetically distinct. We also investigated the geographical distribution of the two varieties in the western Pacific by analyzing specimens collected from Japan and Singapore. Shrimps from Japan and Singapore have been found to belong to varieties I and II, respectively, suggesting that the two varieties have different geographical distribution. Phylogenetic study reveals that the two varieties are more closely related to each other than to the other phylogenetically related Penaeus species. Results from this study suggest the occurrence of two cryptic species in the kuruma shrimp P. japonicus.Communicated by M.S. Johnson, Crawley  相似文献   

17.
Genome-size variation in bivalve molluscs determined by flow cytometry   总被引:5,自引:0,他引:5  
Six of the nine described species of the mole crab genus Emerita are distributed in the Americas, two [E. analoga (Stimpson, 1857) and E. rathbunae Schmitt, 1935] on the west coast, and four [E. benedicti Schmitt, 1935, E. brasiliensis Schmitt, 1935, E. portoricensis Schmitt, 1935 and E. talpoida (Say, 1817)] on the east. The presence of an extended planktonic larval stage in all Emerita species suggests high dispersal potential and the possibility of extensive gene flow among conspecific populations. Two taxa were sampled to study the extent of gene flow between widely separated conspecific populations: E. analoga (California and Chile) and E. talpoida (Massachusetts, South Carolina, and the west coast of Florida), while all other taxa were characterized from a single location. Portions of two mitochondrial genes, cytochrome oxidase I (COI) and 16S ribosomal RNA (16S rRNA) were sequenced. For data analysis, approximately 500 bp (COI) and 400 bp (16S rRNA) were examined. Estimated genetic divergence of 5.41% in COI between E. talpoida populations sampled from the Gulf of Mexico and the Atlantic coast, and 3.47% between E. analoga sampled in Chile and California, indicates that in both cases there has been no recent gene flow between disjunct populations. Additional molecular and morphological studies are necessary to decide whether disjunct populations should be accorded specific status. We predict that many marine invertebrates with antitropical distributions similar to E. analoga may consist of sibling species. In contrast to relationships inferred earlier from distribution patterns, parsimony analyses of both COI and 16S rRNA data yield similar phylogenetic trees in which E. analoga is separated from a clade composed of other species in the Americas; a bootstrap value (67%) in the COI inferred tree marginally supports the separation, but the same tree topology with a higher bootstrap value (84%) is obtained with 16S rRNA sequence data. Genetic divergence among the taxa indicates that the Emerita species constitute an old group and that distribution of species has been modified by past climatic and geological events.  相似文献   

18.
Bryaninops, Gobiodon, Paragobiodon and Pleurosicya are the most abundant genera of coral-associated gobies. These genera are adapted to live among coral, while other small reef gobies (e.g., the genus Eviota) show no obligate association with this living substrate. Thirteen coral-associated species and two Eviota species were sampled from different regions of the Red Sea, along with four populations/species of Gobiodon from the Indian and western Pacific Oceans. A molecular phylogenetic analysis was performed using partial sequences of 12S rRNA, 16S rRNA and cytochrome b mitochondrial genes, 1,199 base pairs in total. Several clades were consistently resolved in neighbor joining-, maximum parsimony-, maximum likelihood and Bayesian analyses. While each of the four genera Gobiodon, Paragobiodon, Bryaninops and Pleurosicya proved to be monophyletic, their relative position in the phylogeny did not support an emergence of coral-associated gobiids as a monophyletic assemblage. Instead, two separate monophyletic sub-groups were discovered, the first comprising Gobiodon and Paragobiodon, and the second Bryaninops and Pleurosicya. Our molecular phylogenetic examinations also revealed one unassigned species of Gobiodon from the Maldives as a distinct species and confirmed three putative and yet unassigned species from the Red Sea. Moreover, the uniformly black colored species of Gobiodon are not monophyletic but have evolved independently within two distinct species groups. Genetic distances were large in particular within Pleurosicya and Eviota. Estimated divergence times suggest that coral-associated gobies have diversified in parallel to their preferred host corals. In particular, divergence times of Gobiodon species closely match those estimated for their typical host coral genus Acropora.  相似文献   

19.
Zoantharia (or Zoanthidea) is the third largest order of Hexacorallia, characterised by two rows of tentacles, one siphonoglyph and a colonial way of life. Current systematics of Zoantharia is based exclusively on morphology and follows the traditional division of the group into the two suborders Brachycnemina and Macrocnemina, each comprising several poorly defined genera and species. To resolve the phylogenetic relationships among Zoantharia, we have analysed the sequences of mitochondrial 16S and 12S rRNA genes obtained from 24 specimens, representing two suborders and eight genera. In view of our data, Brachycnemina appears as a monophyletic group diverging within the paraphyletic Macrocnemina. The macrocnemic genus Epizoanthus branches as the sister group to all other Zoantharia that are sampled. All examined genera are monophyletic, except Parazoanthus, which comprises several independently branching clades and individual sequences. Among Parazoanthus, some groups of species can be defined by particular insertion/deletion patterns in the DNA sequences. All these clades show specificity to a particular type of substrate such as sponges or hydrozoans. Substrate specificity is also observed in zoantharians living on gorgonians or anthipatharians, as in the genus Savalia (Gerardia). If confirmed by further studies, the substrate specificity could be used as reliable character for taxonomic identification of some Macrocnemina.  相似文献   

20.
Populations of two common enteropneusts, Saccoglossus bromophenolosus King et al., 1994 and S. kowalevskii (Agassiz 1873) were sampled between 1991 and 1993 from the southern and northern extremes of their respective ranges: Nova Scotia/Maine and Padilla Bay, Washington for S. bromophenolosus and Maine/South Carolina for S. kowalevskii. Though previously considered a single species, the two taxa were clearly distinct biochemically and genetically. Four of five allozyme loci were diagnostic and indicative of differentiation at the species level. Sequence divergence (27%) of a portion of the mitochondrial 16S rRNA gene suggests that the two taxa have been genetically isolated for a considerable time; hybridization was not evident in sympatric populations. Both taxa contained high concentrations of bromoorganics. The constant association of bromophenols and bromoindoles with S. bromophenolosus and bromopyrroles with S. kowalevskii when they occur sympatrically indicates that bromoorganic contents were genetically and not environmentally determined. Consistent associations between external morphology and bromoorganic contents for additional saccoglossid species support the use of bromoorganics as indices of evolutionary clades in the Enteropneusta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号