首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.  相似文献   

2.
In a preliminary study, the uptake and the mobility of uranium (U) by black oak trees (Quercus velutina) were assessed by measuring the isotopic composition of tree rings in two mature oak trees in a heavy metal contaminated bog in Concord, MA. The bog is adjacent to a nuclear industrial facility that has been processing depleted uranium (DU) since 1959. Over the past 40 years, DU has been leaking from an onsite holding basin and cooling pond down gradient to the bog where the oaks are located. Because DU has no source outside the nuclear industry, contamination from the industrial facility is readily discernable from uptake of natural U by measuring isotopic compositions. Isotope ratio analysis confirms the occurrence of DU in bark, sapwood and heartwood tree rings dating back to 1937, pre-dating the introduction of DU at the site by at least 20 years. Isotope dilution analysis indicates high concentrations of U (>3 ppb) in sapwood that drop rapidly to relatively constant concentrations (0.3-0.4 ppb) in heartwood. These data indicate that once incorporated into tree cells, U is mobile, possibly by diffusion through the tree wood. Concentrations of U in sapwood are approximately equal to average U concentrations in groundwater onsite over the past 10 years, suggesting that oak trees can be used as present-day bioindicators of U-contaminated groundwater. We suggest that regional sampling of oak bark and sapwood is a reasonable, inexpensive alternative to drilling wells to monitor shallow groundwater U contamination.  相似文献   

3.
Chlorinated ethenes (CE) are among the most frequent contaminants of soil and groundwater in the Czech Republic. Because conventional methods of subsurface contamination investigation are costly and technically complicated, attention is directed on alternative and innovative field sampling methods. One promising method is sampling of tree cores (plugs of woody tissue extracted from a host tree). Volatile organic compounds can enter into the trunks and other tissues of trees through their root systems. An analysis of the tree core can thus serve as an indicator of the subsurface contamination. Four areas of interest were chosen at the experimental site with CE groundwater contamination and observed fluctuations in groundwater concentrations. CE concentrations in groundwater and tree cores were observed for a 1-year period. The aim was to determine how the CE concentrations in obtained tree core samples correlate with the level of contamination of groundwater. Other factors which can affect the transfer of contaminants from groundwater to wood were also monitored and evaluated (e.g., tree species and age, level of groundwater table, river flow in the nearby Plou?nice River, seasonal effects, and the effect of the remediation technology operation). Factors that may affect the concentration of CE in wood were identified. The groundwater table level, tree species, and the intensity of transpiration appeared to be the main factors within the framework of the experiment. Obtained values documented that the results of tree core analyses can be used to indicate the presence of CE in the subsurface. The results may also be helpful to identify the best sampling period for tree coring and to learn about the time it takes until tree core concentrations react to changes in groundwater conditions. Interval sampling of tree cores revealed possible preservation of the contaminant in the wood of trees.  相似文献   

4.
Ecological risk assessment (ERA) guidance recommends that field-truthing efforts proceed when modeled hazard quotients (HQs) suggest that toxicological effects are occurring to site receptors. To date, no field methods have been proposed by the regulatory community that can lead to definitive determinations of acceptable or unacceptable risk for birds and mammals, the two terrestrial classes of receptors that are commonly assessed using the HQ method. This paper describes rodent sperm analysis (RSA) as a viable method to be applied in the field at sites with historical contamination. RSA is capable of detecting biological differences that bear on reproduction, a highly regarded toxicological endpoint of concern in USEPA Superfund-type ERAs. The results of RSA's first application at a study site are reported and discussed. The paper also provides the rationale for RSA's efficacy in the context of Superfund and other environmental cleanup programs, where limited time and money are available to determine and evaluate the field condition.  相似文献   

5.
Contaminated sites pose a significant threat to groundwater resources worldwide. Due to limited available resources a risk-based prioritisation of the remediation efforts is essential. Existing risk assessment tools are unsuitable for this purpose, because they consider each contaminated site separately and on a local scale, which makes it difficult to compare the impact from different sites. Hence a modelling tool for risk assessment of contaminated sites on the catchment scale has been developed. The CatchRisk screening tool evaluates the risk associated with each site in terms of its ability to contaminate abstracted groundwater in the catchment. The tool considers both the local scale and the catchment scale. At the local scale, a flexible, site specific leaching model that can be adjusted to the actual data availability is used to estimate the mass flux over time from identified sites. At the catchment scale, a transport model that utilises the source flux and a groundwater model covering the catchment is used to estimate the transient impact on the supply well. The CatchRisk model was tested on a groundwater catchment for a waterworks north of Copenhagen, Denmark. Even though data scarcity limited the application of the model, the sites that most likely caused the observed contamination at the waterworks were identified. The method was found to be valuable as a basis for prioritising point sources according to their impact on groundwater quality. The tool can also be used as a framework for testing hypotheses on the origin of contamination in the catchment and for identification of unknown contaminant sources.  相似文献   

6.
北京西城区雨水管道沉积物中重金属污染风险评价   总被引:1,自引:0,他引:1  
采用地累积指数法、次生相与原生相分布比值法以及Hakanson潜在生态风险指数法从不同角度对雨水管道沉积物中重金属的污染风险进行了评价。地累积指数法的评价结果表明,不同重金属的污染级别为ZnCuCdCrPbNi。而次生相与原生相分布比值法以及Hakanson潜在生态风险指数法的评价结果表明,不同重金属的潜在污染效应关系和潜在生态危害系数大致排序均为CdCuZnPbNiCr。  相似文献   

7.
Fuel leaks from underground storage tanks (USTs) and piping have been a major source of groundwater contamination. In the U.S. and Europe, regulations requiring upgrading of USTs to meet specific standards have significantly reduced instances of fuel contamination. Leak detection is primarily dependent on physical measurement systems that are generally capable of detecting leak rates as small as 0.2 L/h. Fuel leaks that are smaller than this detection threshold may remain undetected for long periods of time, posing a risk of contamination to shallow groundwater resources in sensitive areas. This risk was evaluated by modeling fate and transport of fuel components from small UST leaks under a variety of subsurface conditions and assuming that secondary containment does not exist. It was found that small leaks do have the potential to impact shallow groundwater, particularly if subsurface conditions are not conducive to natural attenuation processes. This may explain situations where groundwater contamination has been found below service stations in virgin areas that have upgraded leak detection systems. Modeling indicates that passive venting of tank and piping backfill could virtually eliminate the volatile components of fuel resulting from small leaks. Monitoring the tank and piping backfill for persistent gasoline vapor under very low vapor extraction conditions may be the best way to detect small chronic fuel leaks. Routine monitoring of shallow groundwater should be a component of a leak detection program, particularly in high-risk areas.  相似文献   

8.
We investigated whether nitrate-N (NO3(-)-N) concentrations of shallow groundwater (< 30 m from the land surface) in a region of intensive agriculture could be predicted on the basis of land use information, topsoil properties that affect the ability of topsoil to generate nitrate at a site, or the 'leaching risk' at different sites. Groundwater NO3(-)-N concentrations were collected biannually for 3 years at 88 sites within the Waikato Region of New Zealand. The land use was classed as either the predominant land use of the farm where the well or bore was located, or the dominant land use within a 500 m radius of the well or bore. Topsoil properties that affect the ability of soil to generate nitrate were also measured at all the sites, and a leaching risk assessment model 'DRASTIC' was used to assess the risk of NO3(-)-N leaching to groundwater at each site. The concentration of NO3(-)-N in shallow groundwater in the Waikato Region varied considerably, both temporally and spatially. Nine percent of sites surveyed had groundwater NO3(-)-N concentrations exceeding maximum allowable concentrations of 11.3 ppm recommended by the World Health Organisation for potable drinking water which is accepted as a public health standard in New Zealand. Over half (56%) of the sites had concentrations that exceeded 3 ppm, indicating effects of human activities (commonly referred to as a human activity value). Very few trends in NO3(-)-N concentration that could be attributed to land use were identified, although market garden sites had higher concentrations of NO3(-)-N in underlying groundwater than drystock/sheep sites when the land use within 500 m radius of a sampling site was used to define the land use. There was also some evidence that within a district, NO3(-)-N concentrations in groundwater increased as the proportion of area used for dairy farming increased. Compared to pastoral land, market gardens had lower total C and N, potentially mineralisable N and denitrifying enzyme assay. However, none of these soil properties were directly related to groundwater NO3(-)-N concentrations. Instead, the DRASTIC index (which ranks sites according to their risk of solute leaching) gave the best correlation with groundwater NO3(-)-N concentrations. The permeability of the vadose zone was the most important parameter. The three approaches used were all considered unsuitable for assessing nitrate concentrations of groundwater, although a best-fit combination of parameters measured was able to account for nearly half the variance in groundwater NO3(-)-N concentrations. We suggest that non-point source groundwater NO3(-)-N contamination in the region reflects the intensive agricultural practices, and that localised, site-specific, factors may affect NO3(-)-N concentrations in shallow groundwaters as much as the general land use in the surrounding area.  相似文献   

9.
The aims of this paper were to quantify the heavy metal concentrations in street dust of small towns in Shanghai suburban area compared with those in urban area, and examine their seasonal and spatial variations, and to assess their risks to water environment and local populations. Street dust samples were collected from three small towns and urban area in Shanghai in different seasons. Levels of heavy metals were determined by atomic adsorption spectrophotometer analyzer. The method of potential ecological risk index and the health risk assessment model were used to evaluate the potential risks to water bodies and local residents, respectively. The mean metal concentrations in street dust of small towns were far above soil background values but still lower than those in the urban area. No significant seasonal change was observed except for Cr, Ni, and Zn concentrations. Higher metal concentrations tended to be located in central area of towns and township roads. The integrated metal contamination was high and posed a strong potential ecological risk. Children had greater health risk than adults. The carcinogenic risk probabilities were under the acceptable level. The hazard index values to children were close to the safe level. Street dust from the studied area has been contaminated by heavy metals. The contamination of these elements is related more to the pollution source than seasonal change. The combination of the six metals may threaten the water environment and has non-cancer health risk to children, but not to adults.  相似文献   

10.
Abstract

Although the Superfund remedial action decision process is a complex process involving a variety of technical, political, and public health issues, the primary goal of remedial action is the protection of public health. We performed an in-depth analysis of 50 post-SARA Records of Decision in order to characterize the role of risk assessment in the decision-making process and determine whether decisions are being made in an effective and environmentally protective manner. Our findings indicate that the majority of decisions to remediate Superfund sites are based on the existence of contamination per se and not on actual public health risk. Although hypothetical risk is an essential consideration, this gray area is not well-defined in the current decision-making process.

The lack of assessment of the degree of risk reduction associated with the remedial alternatives evaluated and the lack of support indicating the effectiveness of the remedial alternatives selected also constitute major weaknesses in the majority of decisions. These inadequacies undermine rationales regarding the protectiveness and cost-effectiveness of the remedial alternatives selected. The fact that objectives beyond addressing public health risk are often unclear in the decision-making process also weakens rationales for costeffectiveness.  相似文献   

11.

The effect of industrial activities on trace metals in farmland of rapidly industrializing regions in developing countries has increasingly been a concern to the public. Here, soils were collected from 13 greenhouse vegetable production (GVP) farms or bases near industrial areas in the Yangtze River Delta of China to investigate the occurrence, speciation, and risks of Cr, Cu, Zn, Cd, Ni, and Pb in GVP soil. The results revealed that the main metal elements causing GVP soil pollution were Cd, Zn, Ni, and Cu, of which contamination levels were generally unpolluted to moderately polluted. Zinc pollution was mainly attributed to heavy fertilization, while Cd, Ni, and Cu pollution may be greatly ascribed to industrial effluents and coal combustion. Metal speciation studies showed that most of Cr, Ni, Cu, and Zn was present in residual fraction while more than half of Cd and Pb was present in non-residual fractions. Additionally, pollution of Cd, Cu, Ni, and Zn in GVP soil increased their corresponding mobile fractions. Risk assessment using potential ecological risk index and risk assessment code showed that Cd was the major risk contributor. Specifically, Cd generally posed moderate or considerable ecological risk as well as displayed medium or high mobility risk in GVP soil. Thus, great attention should be paid to the contribution of both industrial discharges and intensive farming to soil pollution by trace metals, especially Cd, because of its high mobility risk.

  相似文献   

12.

Purpose  

To protect the environmental quality of soil, groundwater, and surface water near the landfill site, it is necessary to make an accurate assessment of the heavy metal mobility. This study aims to present the bio-immobilization behavior of heavy metals in landfill and provide some reference suggestion for the manipulation of heavy metal pollution control after closure.  相似文献   

13.

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd?>?Cu?>?Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.

  相似文献   

14.
In this study, soil samples were collected at 22 sites in Liberty State Park, New Jersey, in 2005, for metal enrichment and potential ecological risk assessment. The geoaccumulation index (I geo) showed that enrichment levels of trace metals followed an order of Cu > Pb > Zn > As > Cr > Hg while the potential ecological risk factor (\( {E}_r^i \)) indicated that the potential ecological risk of the metals was in the order of Cu > Pb > As > Hg > Zn > Cr. Among these 22 sites, this investigation identified 9 sites at moderate ecological risk, 3 sites at considerable ecological risk, and 4 sites at high ecological risk according to the potential ecological risk index (RI). Hierarchical cluster analysis (CA) of soil metal concentrations separated the study sites into four groups, which are supported by the significant difference in RI values. Geographically, three regions in the Liberty State Park brownfield site were determined based on the CA results and RI values. Subarea 1 had low ecological risk while subareas 2 and 3 had a greater potential for ecological risk. Significant correlations of Pb with Cr and Zn were observed in subareas 2 and 3, respectively. This study shows that statistical approaches coupled with a risk assessment index provide a more comprehensive interpretation of land contamination than a single approach in support of planning land redevelopment.  相似文献   

15.
16.
The U.S. Environmental Protection Agency (EPA), in cooperation with E.I. DuPont de Nemours & Company, Inc. (DuPont) and the Oberlin Filter Company (Oberlin), undertook a field demonstration project to evaluate microfiltration technology for removal of zinc and suspended solids from wastewater. The microfiltration system utilized DuPont's Tyvek T-980 membrane filter media in conjunction with the Oberlin automatic pressure filter. The project was undertaken at the Palmerton Zinc Superfund site in April 1990 to verify the ability of the technology to remove dissolved zinc from the site's shallow groundwater. Pretreatment of the groundwater with lime for pH adjustment to precipitate dissolved zinc and other metals was included as part of the technology demonstration program. Analysis of the treated filtrate indicated that the system removed precipitated zinc and other suspended solids at an efficiency greater than 99.9 percent. The filter cake produced during the study passed both the Extraction Procedure (EP) Toxicity and the Toxicity Characteristic Leaching Procedure (TCLP) tests.  相似文献   

17.
Large seasonal fluctuations of the water table are characteristic of aquifers with a low specific yield, including those fractured, double-porosity aquifers that have significant matrix porosity containing virtually immobile porewater, such as the Chalk of northern Europe. Where these aquifers are contaminated, a strong relationship between water table elevation and contaminant concentration in groundwater is commonly observed, of significance to the assessment, monitoring, and remediation of contaminated groundwater. To examine the processes governing contaminant redistribution by a fluctuating water table within the 'seasonally unsaturated zone', or SUZ, profiles of porewater solute concentrations have been established at a contaminated site in southern England. These profiles document the contaminant distribution in porewater of the Chalk matrix over the SUZ at a greater level of detail than recorded previously. A novel double-porosity solute transport code has been developed to simulate the evolution of the SUZ matrix porewater contaminant profiles, given a fluctuating water table, when the groundwater is initially contaminated and the SUZ is initially free of contamination. The model is simply characterised by: the matrix-fracture porosity ratio, the matrix block geometry, and a characteristic diffusion time. De-saturation and re-saturation of fractures is handled by a new approximation method. Contaminant accumulates in the upper levels of the SUZ, where it is less accessible to mobile groundwater, and acts as a persistent secondary source of contamination once the original source of contamination has been removed or has become depleted. The 'SUZ process' first attenuates the progress of contaminants in groundwater, and subsequently controls the slow release of contamination back to the mobile groundwater, thus prolonging the duration of groundwater contamination by many years. The SUZ process should operate in any fractured, micro-porous lithology e.g. fractured clays and mudstones, making this approach widely applicable.  相似文献   

18.
Regarding impact on ecological soil functioning, metal pollution is often considered a constant factor for certain sampling sites. However, especially bioavailable concentrations may differ in space and time. This aspect was investigated on four sites along a metal-polluted river, differing in soil characteristics and metal concentrations. Every four weeks earthworm densities, soil characteristics, and metal concentrations in soil and earthworms were determined. Earthworm biomass and density fluctuated in time and increased with increasing metal contamination, indicating the presence of compensating factors. Multivariate analysis suggested organic matter and moisture content to be the main factors explaining earthworm biomass. Metal concentrations in the earthworms increased with increasing total or 0.01M CaCl(2) extractable soil concentrations, but no time-related trends were seen. Cadmium concentrations in the earthworms exceeded background values, suggesting a potential risk. The neutral red retention biomarker assay, however, did not show any signs of metal stress in the earthworms.  相似文献   

19.
Environmental Science and Pollution Research - The primary goal of this study is to evaluate the groundwater quality and conduct a non-carcinogenic risk assessment of nitrate contamination in an...  相似文献   

20.
In Vietnam, Nicotex's site is perhaps the most infamous case of illegal disposal of toxic pesticides near residential areas. In 2013, affected villagers discovered illegal burials of around 1,000 tons of expired pesticides in the Nicotex factory. Organic pesticides were detected in illegal burial areas (IBAs) around 60 times greater than acceptable levels, but no attention was paid to contamination of metals, metalloids, and other classes of organic contaminants, which could be co-contaminants in pesticide formulation. This study assessed the contaminants remaining in the IBAs and surrounding residential areas two years after the source removal conducted in 2014. Additionally, a preliminary health risk assessment from residual contaminants was performed. Nine classes of chemicals including parental pesticides, inorganic and organic degradation byproducts, and metals and metalloids, comprising 123 chemicals were quantified in soil, sediment, and water samples from Nicotex and surrounding residential areas. Although concentrations of organic pesticides were below acceptable levels, arsenic contamination in the soil in a Nicotex IBA named NCT5 and Nap village (NV) exceeded the acceptable level. The enrichment factor and log-probability plot indicate that arsenic enrichment at NV is not from natural sources but is associated with arsenic contamination in NCT5. Arsenic may be a co-contaminant in pesticide manufacturing or an arsenical pesticide, such as monosodium methanearsonate. Arsenic found in NV was toxic arsenate for which the preliminary risk assessment yielded an unacceptable excess carcinogenic risk (1 × 10?4). While all attention was paid to investigate and treat contamination of organic pesticides, it turns out that arsenic is the major existing threat which poses an unacceptable cancer risk in good agreement with the high cancer rate claimed by villagers near Nicotex. This justifies the need for further investigation of the extent of the arsenic contamination and restoration of the contaminated land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号