首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
彭克俭  秦春  游武欣  沈振国 《生态环境》2007,16(6):1654-1659
采用龙须眼子菜(Potamogeton pectinatus)干样为实验材料,研究了龙须眼子菜对溶液中镉、铅吸附的基本特征。相同浓度不同时间条件下的吸附实验结果显示,龙须眼子菜对溶液中镉、铅离子的吸附速度很快,大约20min就能达到平衡,吸附的限速过程是小孔扩散过程,随着时间的延长,吸附的动力学特征可用假二次方程描述。相同时间不同浓度条件下的吸附实验结果显示,龙须眼子菜对镉、铅的最大吸附量分别能达到32368和24776mg·kg-1,吸附的浓度动力学特征符合Langmuir曲线方程。所有结果都表明,龙须眼子菜能有效地从溶液中去除镉和铅,可以用于水体镉、铅污染的植物修复,也可把龙须眼子菜干样作为一种新的吸附剂用于去除工业废水中的镉和铅。  相似文献   

2.
温度、pH值及盐度对龙须眼子菜吸附镉、铅的影响   总被引:2,自引:0,他引:2  
以龙须眼子菜(Potamogeton pectinatus)干样为材料,研究了不同温度、pH值和盐度对龙须眼子菜吸附镉、铅离子的影响.结果表明,不同温度及不同pH值下龙须眼子菜对镉吸附符合Langmuir模型,对铅的吸附符合Freundlich模型.与5 ℃、10 ℃、30 ℃处理相比,20 ℃时龙须眼子菜对镉、铅的吸附能力较强.当其它条件不变时,在pH值为3~7的范围内,龙须眼子菜对镉的吸附随pH值升高而增加,对铅的吸附随pH值升高而减少.在0.5~10 g·L-1的盐度范围内,随着溶液盐度的增加龙须眼子菜对镉吸附减少,但对铅的吸附却增加.龙须眼子菜是一种对镉、铅有很强的吸附能力的沉水植物,对温度、酸碱度、盐度适应范围也很广,因而可作为生物吸附剂用于含镉、含铅废水的处理.  相似文献   

3.
Cu~(2+)和Pb~(2+)存在下改性玉米秸秆对Cd~(2+)的吸附   总被引:2,自引:1,他引:1  
以丙烯腈改性的玉米秸秆为吸附剂,对水体中的Cu2+,Pb2+,Cd2+进行吸附,用双组分竞争模型和LCA模型对实验结果进行拟合,结果表明:改性玉米秸秆对三种重金属离子的吸附能很好地符合Lang-muir方程,相关性(R2)分别为0.98,0.95和0.98,最大吸附容量分别为9.34,31.8和12.7mg·g-1;在Cu2+和Pb2+存在下,改性玉米秸秆对Cd2+的吸附受到明显的抑制,且随Cu2+和Pb2+浓度的增大抑制作用加强;在低浓度时,该吸附材料优先吸附顺序为:Cu2+>Pb2+>Cd2+,高浓度时为:Pb2+>Cu2+>Cd2+.  相似文献   

4.
采用吸附平衡法,研究了有机酸(草酸、柠檬酸)对潮褐土和红壤吸附Cu2+的影响及机制.结果表明,潮褐土、红壤对Cu2+吸附明显有异,潮褐土对Cu2+吸附量是红壤对Cu2+吸附量的5倍多.潮褐土对Cu2+的竞争吸附率随有机酸浓度升高而降低,当草酸、柠檬酸浓度为10 mmol(L-1时,Cu2+吸附率均分别比对照的降低40%和70%以上.在低浓度条件下,红壤对Cu2+的竞争吸附率随有机酸浓度的提高而增加,当草酸、柠檬酸浓度分别超过1 mmol(L-1和0.05 mmol(L-1时,又随有机酸浓度的升高而降低.两种土壤对Cu2+次级吸附率随有机酸浓度升高而变化的规律与竞争吸附的一致.在相同有机酸浓度下,土壤对Cu2+的次级吸附率均比竞争吸附率的高.  相似文献   

5.
北固山芦苇(Phragmites communis)湿地是长江中下游典型湿地类型之一,沿江工业化和城市化的快速发展使其面临严重的重金属污染威胁.然而,目前有关湿地重金属污染的吸附尤其竞争吸附的研究还少见报道.该文以北固山芦苇湿地为对象,采用平衡法对Cu2+、Cr(VI)在湿地土壤中的吸附行为进行了研究,旨在服务于湿地重金属污染的修复与生物学效应评价.研究结果表明(1)湿地土壤吸附Cu2+、Cr(VI)的过程符合Langmuir等温模型;二者的表观最大吸附量(xm)分别为36.10 g·kg-1和178.57 g·kg-1(初始液质量浓度c0<500 g·m-3),平均吸附率分别达到99.82%± 0.35%和93.17%±1.14%.(2)无论单一吸附或竞争吸附体系,当c0(Cu2+)>250 g·m-3时,平衡液Cu2+质量浓度快速升高.(3)c0相等的Cu2+、Cr(VI) 竞争吸附体系中,平衡液中Cu2+质量浓度升高,Cr(VI)质量浓度下降;但xm的变化表现为Cu2+增加了2.7倍,Cr(VI)降低了2.4倍.(4)Cu2+、Cr(VI) 的竞争吸附体系中,随Cr(VI)初始液质量浓度的变化(c0(Cu2+)恒定),Cr(VI)的xm下降至其单一吸附时的6%;而随Cu2+初始液质量浓度的变化(c0(Cr(VI))恒定),Cu2+的xm仅为其单一吸附时的1/3.  相似文献   

6.
本文采用改性与化学再生方法,探索天然斜发沸石对氨氮吸附的最佳改性及化学再生条件.无机盐改性、热改性、有机改性试验结果表明,最佳改性方法为无机盐NaCl法,改性沸石吸附量较天然沸石提升了近20%,最佳NaCl浓度为1 mol·L~(-1);热改性法不能显著提高沸石的氨氮吸附容量,相反高温会破坏其结构;十二烷基苯磺酸钠改性法可以使改性沸石在其表面形成了新的阳离子吸附点,使其吸附性能提升;而十六烷基三甲基溴化铵改性沸石表面形成的是阴离子吸附点,对带正电的NH_4~+会产生排斥,导致其吸铵性能下降.化学再生试验表明,KCl溶液对铵饱和沸石的再生效果最显著,适宜再生浓度为0.1—0.2 mol·L~(-1).经KCl再生后的沸石再次通过NaCl改性,可延长沸石使用周期以及提高再生沸石的吸附能力.  相似文献   

7.
黄原酸化膨润土对Cu^2+的吸附性能   总被引:1,自引:1,他引:0  
研究黄原酸化膨润土(XB)对铜离子的吸附性能.考察XB对Cu2 吸附的主要影响因素,最佳吸附条件为:[Cu2 ]起始>=80mg·1-1,pH=6,XB用量2g·1-1,吸附作用时间60min,XB对Cu2 的去除率最高达99.9%,残余浓度为0.077mg·1-1,远低于国家综合污水排放一级标准.采用FT-IR,TG,SEM,XRD和粒度分析等表征手段,分析了XB吸附Cu2 前后表观形貌和晶胞结构的变化,结果表明,黄原酸化改性增大了膨润土的粒度,使之极易沉降;推测Cu2 在XB吸附剂上的吸附为络合或螯合作用.  相似文献   

8.
通过室内培养和吸附-解吸实验,研究了不同柠檬酸含量土壤对Cu2+、Cd2+吸附-解吸的影响.结果表明,土壤对Cu2+的吸附量随加入柠檬酸量的增加而明显增加,达到峰值后(柠檬酸含量为0.5 mmol.kg-1),吸附量随柠檬酸含量的增加而下降,即Cu2+的吸附曲线呈峰型.在低柠檬酸含量时,土壤对Cu2+的吸附量受Cd2+浓度影响较小,但随柠檬酸含量的增加,在低铜浓度处理(Cu2+浓度为600 mg·L-1,Cu600)下,土壤对Cu2+的吸附量随Cd2+浓度的增大而增大,但在高浓度铜处理(Cu2+浓度为1000 mg·L-1,Cu1000)下,土壤对Cu2+的吸附量随Cd2+浓度的增加而减少.Cu2+的解吸量随柠檬酸含量的增加而总体上降低;相同柠檬酸含量下,Cu600处理下,Cd2+浓度为10 mg·L-1(Cd10)条件下Cu2+解吸量明显低于无Cd2+(Cd0)和Cd2+浓度为1 mg·L-1(Cd1)条件下.而Cu1000处理下,Cd2+的浓度对Cu2+解吸量的影响较小.Cd2+吸附量随柠檬酸含量的增加无明显变化,但随Cu2+浓度的增加下降明显,其中无Cu2+处理Cd2+吸附量极显著地高于Cu600和Cu1000处理,而Cu600和Cu1000处理间差异不显著,且土壤对Cd2+的吸附随镉添加量增加而增加;Cd2+的解吸量随柠檬酸含量的增加先增大后保持稳定,在柠檬酸含量为0.5 mmol.kg-1时达到最大,Cu600处理的Cd2+的解吸量显著地高于Cu1000处理.  相似文献   

9.
采用吸附平衡法,研究了有机酸(草酸、柠檬酸)对潮褐土和红壤吸附Cu2+的影响及机制。结果表明,潮褐土、红壤对Cu2+吸附明显有异,潮褐土对Cu2+吸附量是红壤对Cu2+吸附量的5倍多。潮褐土对Cu2+的竞争吸附率随有机酸浓度升高而降低,当草酸、柠檬酸浓度为10 mmolL-1时,Cu2+吸附率均分别比对照的降低40%和70%以上。在低浓度条件下,红壤对Cu2+的竞争吸附率随有机酸浓度的提高而增加,当草酸、柠檬酸浓度分别超过1 mmolL-1和0.05 mmolL-1时,又随有机酸浓度的升高而降低。两种土壤对Cu2+次级吸附率随有机酸浓度升高而变化的规律与竞争吸附的一致。在相同有机酸浓度下,土壤对Cu2+的次级吸附率均比竞争吸附率的高。  相似文献   

10.
杨连珍  梁霞  王吟  王学江 《环境化学》2013,32(3):387-393
以竹炭为原料,采用HNO3(NA)作为改性药剂,通过微波辅助加热的方法对竹炭进行改性;运用Boehm滴定、扫描电子显微镜(SEM)、电子能谱(EDAX)和红外光谱(FTIR)对改性竹炭进行了表征;考察了pH、时间、温度和离子强度等对改性竹炭吸附Cu2+的影响.研究结果表明,微波辅助硝酸改性使得竹炭表面的羧基、酚羟基、内酯基等酸性含氧官能团的数量有所增加;改性竹炭对Cu2+吸附更符合Langmuir等温方程,吸附为自发的吸热过程;吸附动力学符合准二级动力学方程;溶液离子强度增大不利于其对Cu2+的吸附.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号