首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To find out more on the structure of humic substances (HS), isolated dissolved organic carbon (DOC) samples from a brown water lake and a wastewater effluent were fractionated and subjected to alkaline hydrolysis. UV/Vis and fluorescence spectroscopy, as well as size-exclusion chromatography with on-line detection of UV absorption, fluorescence and DOC concentration were used to investigate the structural changes caused by the hydrolysis reaction. Following hydrolysis, the fluorescence intensity increased considerably despite a decrease in the UV absorption. The UV absorption and the DOC data from the SEC experiments revealed a strong shift to smaller molecular sizes after hydrolysis. The spectra of the hydrolysed samples, as well as the size-exclusion chromatograms, were compared to spectra of hydroxybenzoic acids and hydroxycinnamic acids. From this comparison, it can be concluded that the hydrolysis products have a structure similar to these organic acids.  相似文献   

3.
运用紫外可见光吸收光谱与荧光光谱研究乌梁素海沉积物孔隙水中溶解有机质的来源、结构及腐殖化程度。r(A,C)、HIX、SUVA280和SUVA254等被用于表征DOM的腐殖化程度和芳香构化程度及结构,f450/500用于指示DOM的来源。研究结果表明:腐殖化程度最高的点为湖泊东部的W4样点,腐殖化程度最低的为总排干影响区域的W1样点。E253/203表明湖泊入口处沉积物孔隙水中有机质主要为不可取代的芳香环结构。荧光指数f450/500为1.57~1.82之间。总体而言,f450/500的值更接近于1.6,处于2个端源中间,说明乌梁素海DOM中的腐殖质主要来源于陆源输入。相关分析的结果表明, DOM的不同来源对其腐殖化程度产生影响。随着腐殖化值的增大,DOM的来源由生物源向陆源过渡。  相似文献   

4.
Real-time or near real-time in-situ monitoring of dissolved organic matter (DOM) composition in natural waters and engineered treatment systems provides critical information to water quality scientists and engineers, particularly when the monitoring techniques can provide some information about the chemical nature of DOM. The efficacy of various indices derived from rapid, low-cost spectroscopic and chromatographic techniques to discriminate DOM composition was tested for samples prepared from well-defined mixtures of purified Aldrich humic acid (PAHA) and Suwannee River fulvic acid (SRFA). Sensitivities of the discrimination indices were examined by comparing (1) the differences between measured values and those predicted based from mass balance and the end member characteristics, and (2) the linear correlations between index values and mass ratios of the DOM mixtures. Size exclusion chromatography (SEC) results revealed that the weight-average molecular weight (MW(w)) may be a useful approach for tracking DOM mixing processes, although the number-average molecular weight (MW(n)) may be better for distinguishing different DOM compositions. Specific ultraviolet absorbance measured at 254 nm (SUVA(254)) performed better as a discrimination index than did two previously recommended absorbance ratios, both in terms of making better predictions of intermediate compositions and in exhibiting a more linear correlation with PAHA mass ratio. Several well-defined peaks in the derivative absorption spectra (301 and 314 nm for the first derivative, 217 nm for the third derivative, and 211 and 224 nm for the fourth derivative) also were found to be promising potential DOM discrimination indices. Finally, a fluorescence ratio based on humic- versus fulvic-like fluorescence proved to be a superior DOM discrimination index for the two DOM end members studied here. In general, this study illustrates the evaluation process that should be followed to develop rapid, low-cost discrimination indices to monitor DOM compositions based on end member mixing analyses.  相似文献   

5.
Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation–emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores.  相似文献   

6.
Yan M  Korshin G  Wang D  Cai Z 《Chemosphere》2012,87(8):879-885
High-performance liquid chromatography-size exclusion chromatography (HPLC-SEC) coupled with a multiple wavelength absorbance detector (200-445 nm) was used in this study to investigate the apparent molecular weight (AMW) distributions of dissolved organic matter (DOM). Standard DOM, namely humic acid, fulvic acid and hydrophilic acid, from the Suwannee River were tested to ascertain the performance and sensitivity of the method. In addition to four compounds groups: humic substances (Peak 1, AMW 16 kD), fulvic acids (Peak 2, AMW 11 kD), low AMW acids (Peak 3, AMW 5 kD), and low AMW neutral and amphiphilic molecules, proteins and their amino acid building blocks (Peak 4, AMW 3 kD), an new group that appears to include low AMW, 6-10 kD, humic substances was found based on investigating the spectra at various elution times. The spectroscopic parameter S>365 (slope at wavelengths >365 nm) was determined to be a good predictor of the AMW of the DOM. The detector wavelength played an important role in evaluating the AMW distribution. For some fractions, such as the humic and low AMW non-aromatic substances, the error in measurement was ±30% as determined by two-dimensional chromatograms detected at an artificially selected wavelength. HPLC-SEC with multiple wavelength absorbance detection was found to be a useful technique for DOM characterization. It characterized the AMW distributions of DOM more accurately and provided additional, potentially important information concerning the properties of DOM with varying AMWs.  相似文献   

7.
Saadi I  Borisover M  Armon R  Laor Y 《Chemosphere》2006,63(3):530-539
The potential of effluent DOM to undergo microbial degradation was assessed in batch experiments. Effluent samples from Haifa wastewater treatment plant and Qishon reservoir (Greater Haifa wastewater reclamation complex, Israel) were incubated either with effluent or soil microorganisms for a period of 2-4 months and were characterized by dissolved organic carbon contents (DOC), UV(254) absorbance and by fluorescence excitation-emission matrices. Three main fluorescence peaks were identified that can be attributed to humic/fulvic components and "protein-like" structures. During biodegradation, specific fluorescences (F/DOC) of the three peaks were increased at various extents, suggesting selective degradation of non-fluorescing constituents. In some cases increase in the effluent fluorescence (F) was observed thus proposing (i) the formation of new fluorescing material associated with DOM biodegradation and/or (ii) degradation of certain organic components capable of quenching DOM fluorescence. Based on the ratio between fluorescence intensity and UV(254), different biodegradation dynamics for fluorescent DOM constituents as compared with other UV-absorbing molecules was delineated. Overall, about 50% of the total DOM was found to be readily degradable such that residual resistant DOC levels were between 8 and 10 mg l(-1). Enhanced levels of residual DOM in effluent-irrigated soils may contribute to the DOM pool capable of carrying pollutants to groundwater.  相似文献   

8.
Wei Z  Xi B  Zhao Y  Wang S  Liu H  Jiang Y 《Chemosphere》2007,68(2):368-374
Municipal solid waste (MSW) compost contains a significant amount of humic substances. In this study, the compost consisted of residual MSW with the metal, plastic and glass removed. In order to enhance degradation processes and the degree of composting humification, complex microorganisms (Bacillus casei, Lactobacillus buchneri and Candida rugopelliculosa) and ligno-cellulolytic (Trichoderma and White-rot fungi) microorganisms were respectively inoculated in the composting process. During the MSW composting, humic acid (HA) was extracted and purified. Elements (C, N, H, O) and spectroscopic characteristics of the HA were determined using elementary analyzer, UV, Fourier transform infrared (FTIR), and fluorescence spectroscopy. The elements analysis, UV, FTIR and fluorescence spectra all led to the same conclusion, that is inoculations with microbes led to a greater degree of aromatization of HA than in the control process (CK) with no inoculation microbes. This indicated that inoculation with microbes in composting would improve the degree humification and maturation processes, in the following order: lingo-cellulolytic>complex microorganisms>CK. And mixed inoculation of MSW with complex microorganisms and lingo-cellulolytic during composting gave a greater degree of HA aromatization than inoculation with complex microorganisms or lingo-cellulolytic alone. But comparing with the HA of soil, the HA of MSW compost revealed a lower degree of aromatization.  相似文献   

9.
Lingbo L  Song Y  Congbi H  Guangbo S 《Chemosphere》2005,60(4):467-476
Refinery effluent-derived humic substances (HS) are important for developing refinery effluent reclamation techniques and studying the environmental chemistry of wastewater effluents. In this study, dissolved organic matter (DOM) from refinery effluent was concentrated using a portable reverse osmosis (RO) system. HS were isolated from RO retentates with XAD-8 resin. A variety of approaches such as specific UV absorbance at 254nm (SUV(254)), elemental analysis, size exclusion chromatography (SEC), solid-state cross polarization magic angle spinning (13)C nuclear magnetic resonance spectrometry ((13)C CPMAS NMR), Fourier transform infrared spectrometry (FTIR), and electrospray ionization/ion trap/mass spectrometry (ESI/ion trap/MS) were employed for characterization of HS. The portable RO system exhibited high yield and recovery of DOM for concentrating refinery effluent. The concentration of dissolved organic carbon (DOC) in the refinery effluent was 9.9mg/l, in which humic acids (HA) and fulvic acids (FA) accounted for 2.3% and 34.6%, respectively. Elemental and SUV(254) analyses indicated relative high amounts of aliphatic structures and low amounts of aromatic structures in refinery effluent-derived HS. Refinery effluent-derived HS displayed lower molecular weight than natural HS. The number-average molecular weight (M(n)) and the weight-average molecular weight (M(w)) of HA were 1069 and 2934, and those of FA were 679 and 1212 by SEC, respectively. By ESI/ion trap/MS, the M(n) and the M(w) of FA were 330 and 383. Four kinds of carbon structures (aliphatic, aromatic, heteroaliphatic, and carboxylic carbons) were found in refinery effluent-derived HS by (13)C NMR analysis. The quantitative results support the interpretation that these HS are rich in aliphatic carbons and poor in aromatic carbons. Proteinaceous materials were identified by FTIR analysis in refinery effluent-derived HS.  相似文献   

10.
Liu R  Lead JR  Baker A 《Chemosphere》2007,68(7):1304-1311
3-D fluorescence excitation-emission matrix (EEM) spectrophotometry was applied to investigate the fluorescence characterization of colloidal organic matter (COM) and truly dissolved organic matter (DOM) from an urban lake and a rural river fractionated by the cross flow ultrafiltration (CFUF) process with a 1kDa membrane. Relatively high tryptophan-like fluorescence intensity is found in the urban water, although the fluorescence of both water samples is mainly dominated by humic/fulvic-like fluorophores. During CFUF processing, the fluorescence intensities of humic/fulvic-like materials in the retentate increased rapidly, but a slight increase is also observed in the permeate fluorescence intensity. Very different ultrafiltration behaviour occurred with respect to the tryptophan-like fluorophore, where both permeate and retentate fluorescence intensities increase substantially at the beginning of the CFUF process, then tend to remain constant at high concentration factor (cf) values. Comparison with tryptophan standards demonstrates that freshwater tryptophan-like fluorescence is not dissolved and 'free', but is, in part, colloidal and related to the ultrafiltration behaviour of fulvic/humic-like matter. A good linear relationship between the retentate humic/fulvic-like fluorescence intensity and organic carbon concentration further reveals that fluorescent humic/fulvic-like substances are the dominant contributors to colloidal organic carbon, mainly in the colloidal fraction.  相似文献   

11.
In this study, seven soil and sedimentary humic acid samples were analyzed by synchronous scan fluorescence (SSF) spectroscopy. The spectra of these humic acids were compared to each other and characterized, based on three major SSF peaks centered at approximately 281, 367 and 470 nm. Intensity ratios were calculated based on these peaks that were used to numerically assist in source discrimination. All humic acid samples were then reacted with Ferrate(VI) and were again analyzed with SSF. Upon the addition of Ferrate(VI) SSF spectra were obtained which more readily differentiated humic acid source. This method will assist geochemists and water management districts in tracing sources of organic matter to receiving water bodies and may aid in the elucidation of the chemical nature of humic acids.  相似文献   

12.

Dissolved organic matter (DOM) is a critical component in aquatic ecosystems, yet its seasonal variability and reactivity remain not well constrained. These were investigated at the land-ocean interface of a subtropical river (Minjiang River, SE China), using absorption and fluorescence spectroscopy. The annual export flux of dissolved organic carbon (DOC) from the Minjiang River (5.48 × 1010 g year?1) was highest among the rivers adjacent to the Taiwan Strait, with 72% occurring in spring and summer. The freshwater absorption coefficient a280, DOC-specific UV absorbance SUVA254 and humification index HIX were higher, while the spectral slope S275–295 and biological index BIX were lower in summer than in winter. This suggests intensified export of terrestrial aromatic and high molecular weight constituents in the rainy summer season. Six fluorescent components were identified from 428 samples, including humic-like C1–C3, tryptophan-like C4 and C6, and tyrosine-like C5. The freshwater levels of four components (C1, C2, C4, and C6) were lower while that of C5 was higher in the wet season than in the dry season, suggesting contrasting seasonal variations of different constituents. Laboratory experiments were performed to assess the effects of photochemical and microbial degradation on DOM. Photo-degradation removed chromophoric and fluorescent DOM (CDOM and FDOM) effectively, which was stronger (i) for high molecular weight/humic constituents and (ii) during summer under higher solar radiation. Microbial degradation under laboratory controlled conditions generally showed little effect on DOC, and had smaller impact on CDOM and FDOM in winter than in summer. Overall, this study showed notable seasonal changes in the chemical composition and reactivity of DOM at the land-ocean interface, and demonstrated the significant effects of photo-degradation.

  相似文献   

13.

Introduction

Dissolved organic matter (DOM) is the most active component in environmental system and its chemical and structural characteristics most likely influence its biodegradation. Four surface soil (0?C20?cm) and three core sediment samples (0?C10?cm) were collected from Wuliangsuhai Lake. The objectives of this study were to investigate the spectral properties and humification degree of DOM and to determine and discuss comparatively the complexing capacities and stability constants of DOM by Cu (II) in the Hetao region.

Materials and methods

In this study, fluorescence spectra and fluorescence quenching methods were used to evaluate the humification degree of DOM and calculate the complexing capacities and the stability constants between DOM and Cu (II).

Results and discussion

Two defined peaks, at wavelengths of 260??300?nm (peak I) and 300??350?nm (peak II), could be identified for soil DOM at a ???? value of 30?nm. In sediment DOM extracts, a third peak (III) was observed near 364?nm. The results show that there is a significant difference in the structure of DOM because of different sources. The humification degree is significantly higher for soil samples than those of sediment samples. The FT-IR spectra of DOM show that structure in sediment DOM is more functional groups than those in soil DOM. DOM has a stronger Cu binding affinity in soils than in sediment in the Hetao region, which may lead to potentially significant influence on the migration and transformation of Cu (II).  相似文献   

14.
The aim of the present work was to compare the concentration changes of polyaromatic hydrocarbons (PAH) and the course of humification processes during wastewater treatment. Studies of samples from a biological-mechanical wastewater treatment plant in Sosnowiec-Zagórze (Poland) were carried out. Determination of PAH was performed both for wastewater sludge and sludge water. Observations of the course of humification processes for humic acid fractions isolated from sludges were conducted. Analysis of PAH extracted from wastewaters and from sludge was performed by means of high-performance liquid chromatography. Investigations of humification processes were conducted by electron paramagnetic resonance and nuclear magnetic resonance methods. The elementary composition changes in the structure of the extracted humic acids were determined. It was found that polyaromatic hydrocarbons appear during the processes of humification. Their content in water decreased only after the process of sludge aeration; however, sludge water leaving the settlers was PAH-enriched.  相似文献   

15.
Synchronous-scan fluorescence spectra of Chlorella vulgaris solution   总被引:1,自引:0,他引:1  
Liu X  Tao S  Deng N 《Chemosphere》2005,60(11):1550-1554
The characterization of the Chlorella vulgaris solution was carried out using synchronous-scan spectroscopy. The range of concentration of algae and Fe(III) in aqueous solutions were 5 × 108–8 × 109 cells l−1 and 10–60 μM, respectively. Effective characterization method used was synchronous-scan fluorescence spectroscopy. The wavelength difference (Δλ) of 90 nm was maintained between excitation and emission wavelengths; 90 nm was found to be the best Δλ for effective characterization of Chlorella vulgaris solution with or without quencher species (e.g., Fe(III), humic acid (HA)) for the first time. The peak was observed at about EX 236.6 nm/EM 326.6 nm for synchronous-scan fluorescence spectra. The fluorescence quenching of algae in system of algae–Fe(III)–HA was studied using synchronous-scan spectroscopy for the first time. Fe(III) was clearly the effective quencher. The relationship between I0/I (quenching efficiency) and c (concentration of Fe(III) added) was a linear correlation for the algae solution with Fe(III). Also, Aldrich humic acid was found to be an effective quencher. pH effect on synchronous-scan fluorescence intensity of algal solution with Fe(III) and/or HA was evident.  相似文献   

16.
Biodegradation-induced changes in the characteristics of dissolved organic matter (DOM) and the subsequent effects on disinfection byproduct formation potentials (DBPFPs) were investigated using six different sources of DOM (algae, leaf litter, reed, compost, paddy water, and treated municipal sewage effluent). Microbial incubation of the DOM samples increased the specific ultraviolet absorbance and humic-like fluorescence but decreased the protein/tannin-like fluorescence and relative distribution of smaller-sized DOM components. Comparison of the original versus biodegraded DOM samples using resin fractionation and pyrolysis–gas chromatography/mass spectrometry revealed that the biodegradation-induced changes were highly dependent on DOM sources and exhibited no consistent trends among the different sources. Changes in DBPFPs also differed with DOM source. Vascular plant-derived DOM (leaf litter and reed) demonstrated an enhancement in specific DBPFP after biodegradation, whereas little change or even a slight decrease was observed for the other DOM sources. Correlations that were significant between specific DBPFPs and the aromatic content or humic-like fluorescence for the original DOM samples were no longer significant after microbial degradation. The relative abundance of hydrophobic to hydrophilic structures in DOM is suggested to be a general indicator for the formation potential of trihalomethanes irrespective of DOM source and the state of biodegradation.  相似文献   

17.
Pore water was separated either with or without water extraction prior to centrifugation (7600 or 20 000 × g) in order to investigate the effects of separation procedure on the amount and properties of dissolved organic matter (DOM i.e. the material passing through a 0.45-μm filter) in three freshwater sediments. On the basis of solubility in alkaline, organic matter was concluded to compose of humic substances in two (S1 and S3) and of humin (S2) in one of the sediments. DOM in the samples was quantified by total organic carbon measurement. Specific UV-absorption (SUVA) and high performance size exclusion chromatography (HPSEC) analyses were used to characterize DOM. Sorption of pyrene was used as a measure for functionality of DOM. Both water extraction and centrifugation speed were shown to affect the properties of DOM; however, the effects were sediment dependent. Water extraction increased the amount of DOM separated from the two sediments that had humic character (S1 and S3). In most cases water extraction increased SUVA and shifted the molecular size distribution of DOM towards larger sizes. The separation procedure had also an effect on the functionality of DOM. In water extracted samples of S2 and S3 the sorption of pyrene was higher than in the corresponding samples separated without water extraction, whereas in S1 similar effect was not found. Generally, centrifugation speed had smaller effects on the properties of DOM than water extraction. The fact that the effects of separation procedure on DOM depend on the sediment characteristics complicates the comparison between samples and evaluation of functionality in field conditions.  相似文献   

18.
Partial least squares (PLS) modeling was applied to investigate number-average molecular weights (Mn) and weight-average molecular weights (Mw) of fulvic acids (FAs) in relation to the corresponding UV/VIS spectra. The Mn and Mw values were determined by size exclusion chromatography (SEC). The impact of pH control, wavelength range and density as well as smoothing and derivation of spectra were tested. It was found that PLS models based on absorbance spectra can be a fast and powerful complement to existing techniques employed for determination of molecular weights of FAs. Control of pH of the FA solutions is important for the performance of the models. The models were also compared with the best univariate alternatives.  相似文献   

19.
In-vessel composting of an aged coal-tar contaminated soil from a manufactured gas plant site was investigated over 98days using laboratory-scale in-vessel composting reactors. The composting reactors were operated at 18 different operational conditions using a logistic three-factor factorial design with three temperatures (T=38, 55 and 70 degrees C), four soil to green waste ratios (S:GW; 0.6:1, 0.7:1, 0.8:1 and 0.9:1 on a dry weight basis) and three moisture contents (MC; 40%, 60% and 80%). Excitation-emission matrix (EEM) fluorescence spectroscopy was used to investigate organic matter dynamics in the composting mixture. The results of this investigation indicated that formation of humic substances can be monitored by fluorescence excitation-emission matrix, and provided evidence of progressive mineralization or humification of the composting mixture. Peak excitation wavelength shifts and peak fluorescence intensity can both be used as indicators to monitor the humification or maturation of compost. Finally, the fluorescence index can be applied to investigate the origin of humic substances and fulvic acids, and the humification or maturation of compost.  相似文献   

20.
For the purpose of investigating the effect of landfill leachate on the characteristics of organic matter in groundwater, groundwater samples were collected near and in a landfill site, and dissolved organic matter (DOM) was extracted from the groundwater samples and characterized by excitation–emission matrix (EEM) fluorescence spectra combined with fluorescence regional integration (FRI) and self-organizing map (SOM). The results showed that the groundwater DOM comprised humic-, fulvic-, and protein-like substances. The concentration of humic-like matter showed no obvious variation for all groundwater except the sample collected in the landfill site. Fulvic-like substance content decreased when the groundwater was polluted by landfill leachates. There were two kinds of protein-like matter in the groundwater. One kind was bound to humic-like substances, and its content did not change along with groundwater pollution. However, the other kind was present as “free” molecules or else bound in proteins, and its concentration increased significantly when the groundwater was polluted by landfill leachates. The FRI and SOM methods both can characterize the composition and evolution of DOM in the groundwater. However, the SOM analysis can identify whether protein-like moieties was bound to humic-like matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号