首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The contamination of groundwater in the aquifer of the La Llagosta basin (Besòs river basin) due to waste disposal in quarries formerly used for the extraction of dry raw materials has led to the cessation of groundwater extraction for public water supply. The mobilization of pollutants was largely caused by fluctuations in piezometric levels, which led to the washing of buried waste. The hydrogeochemical processes associated with uncontrolled waste disposal in these landfilled areas of the La Llagosta basin aquifer were studied along a flow path that crosses the contaminated area. The PHREEQC code was used to establish the reactions associated with the different mineral phases through inverse modeling. This transport code, ionic exchange phenomena, surface reactions and balance (mineral phase) reactions were used to simulate the dilution phenomenon associated with the pollution after the potential removal of the sources of contamination. One-dimensional advective–dispersive modeling indicates a substantial reduction in Ca, Mg, Na and SO42− within one year and stabilization within four years.  相似文献   

2.
The groundwater samples collected from the shallow and deep groundwater aquifers of an industrial area of the Kanpur city (Uttar Pradesh, India) were analyzed for the concentration levels and distribution pattern of nitrogenous species, such as nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), ammonical-nitrogen (NH4-N), organic-nitrogen (Org-N) and total Kjeldahl-nitrogen (TKN) to identify the possible contamination source. Geo-statistical approach was adopted to determine the distribution and extent of the contaminant plume. In the groundwater aquifers NO3-N, NO2-N, NH4-N, TKN, Org-N and Total-N ranged from 0.10 to 64.10, BDL (below detection limit)-6.57, BDL-39.00, 7.84–202.16, 1.39–198.97 and 8.89–219.43 mg l−1, respectively. About 42% and 26% of the groundwater samples of the shallow and deep groundwater aquifers, respectively, exceeded the BIS (Bureau of Indian Standards) guideline value of 10 mg l−1 for NO3-N and may pose serious health hazards to the people of the area. The results of the study revealed that the groundwater aquifers of the study area are highly contaminated with the nitrate and indicates point source pollution of nitrate in the study area.  相似文献   

3.
Arsenic concentrations exceeding 10 μg/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination.  相似文献   

4.
K. J. Flynn  K. Flynn 《Marine Biology》1998,130(3):455-470
The dinoflagellates Scrippsiella trochoidea (Stein) and Alexandrium minutum (Halim) were grown in a light–dark cycle with nitrate or nitrate plus ammonium under three different nutrient-supply regimes (dilution with fresh media in dark phase only or during the entire light–dark cycle at the same daily dilution rate, or with a faster continuous dilution). When supplied with nitrate + ammonium, A. minutum released a proportion (as much as 100% from dark-fed cells) of the nitrate taken up during the dark phase as nitrite, reflecting a rate-limiting step at nitrite reduction and poor regulation of inorganic-N uptake and assimilation. S. trochoidea released much smaller amounts of nitrite, if any. Nitrate and ammonium were not accumulated to any extent by either species in darkness, and the transient increases in the size of the free amino acid pool were too small to explain the fate of the newly assimilated N. Thus uptake through to incorporation of N into macromolecules appeared to be coupled in these species, even in darkness when increasing glutamine:glutamate (Gln:Glu) ratios suggested rising C-stress. A mechanistic model was developed from an earlier ammonium–nitrate interaction model (ANIM) by the inclusion of an internal nitrite pool, with control over the supply of reductant for nitrite reduction linked to photosynthetic and respiratory components. The model can reproduce the release of nitrite seen in the experiments, and also the release of nitrite in response to nitrate-feeding of N-stressed cells reported elsewhere. Received: 22 August 1997 / Accepted: 26 September 1997  相似文献   

5.
山东省地下水硝酸盐溯源研究   总被引:2,自引:0,他引:2  
针对山东全省农村地区进行地下水取样,采用离子交换色层法对地下水NO3--N质量浓度大于10 mg·L-1的地下水样品进行预处理,做溯源研究,同时采集当地植物、化学肥料、人畜粪便、土壤等样品,测定δ15N值,以针对山东地区,对现存的δ15N值数据库进行完善与补充,使本研究更具代表性与准确性。研究结果表明,如以研究区域整体为单位,有35.45%地下水样品的NO3--N来自于粪肥污染,有27.1%的地下水样品是受化肥污染,还有37.45%的地下水样品的NO3--N污染来自于化肥、粪肥以及生活污水的混合污染。作者还进一步分析了地下水中NO3--N平均质量浓度高于20 mg·L-1的烟台和潍坊,结果表明,烟台地区的地下水NO3--N污染有55.56%来自于粪肥污染,有5.56%来自于化肥污染,有38.88%来自于化肥、粪肥以及生活污水的混合污染;潍坊地区的地下水NO3--N污染有16.13%来自于粪肥污染,有48.39%来自于化肥污染,还有35.48%来自于化肥、粪肥以及生活污水的混合污染。  相似文献   

6.
Targeting arsenic-safe aquifers for drinking water supplies   总被引:1,自引:0,他引:1  
At present, 70 countries worldwide are affected by groundwater contamination by arsenic (As) released from predominantly geogenic sources. Consequently, the As problem is becoming a global issue. The option to target As-safe aquifers, which uses geological, geochemical, hydrogeological, morphological and climatic similarities to delimit As-safe aquifers, appears as a sustainable mitigation option. Two pilot areas, Meghna Flood Plain in Matlab Upazila, representative of Bengal Delta in Bangladesh, and Río Dulce Alluvial Cone, representing a typical aquifer setting in the Chaco-Pampean Plain in Argentina groundwater As occurrence, were compared. In rural Bangladesh, As removal techniques have been provided to the population, but with low social acceptance. In contrast, “targeting As-safe aquifers” was socially accepted in Bangladesh, where sediment color could be used to identify As-safe aquifer zones and to install safe wells. The investigation in Argentina is more complex because of very different conditions and sources of As. Targeting As-safe aquifers could be a sustainable option for many rural areas and isolated peri-urban areas.  相似文献   

7.
Humic substances in groundwater and aquifer sediments from the arsenicosis and Blackfoot disease (BFD) affected areas in Bangladesh (Bengal delta plain) and Taiwan (Lanyang plain and Chianan plain) were characterized using fluorescence spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that the mean concentration of As and relative intensity of fluorescent humic substances are higher in the Chianan plain groundwater than those in the Lanyang plain and Bengal delta plain groundwater. The mean As concentrations in Bengal delta plain, Chianan plain, and Lanyang plain are 50.65 μg/l (2.8–170.8 μg/l, n = 20), 393 μg/l (9–704 μg/l, n = 5), and 104.5 μg/l (2.51–543 μg/l, n = 6), respectively. Average concentrations and relative fluorescent intensity of humic substances in groundwater are 25.381 QSU (quinine standard unit) and 17.78 in the Bengal delta plain, 184.032 QSU and 128.41 in the Chianan plain, and 77.56 QSU and 53.43 in the Lanyang plain. Moreover, FT-IR analysis shows that the humic substances extracted from the Chianan plain groundwater contain phenolic, alkanes, aromatic ring and amine groups, which tend to form metal carbon bonds with As and other trace elements. By contrast, the spectra show that humic substances are largely absent from sediments and groundwater in the Bengal delta plain and Lanyang plain. The data suggest that the reductive dissolution of As-adsorbed Mn oxyhydroxides is the most probable mechanism for mobilization of As in the Bengal delta plain. However, in the Chianan plain and Lanyang plain, microbially mediated reductive dissolution of As-adsorbed amorphous/crystalline Fe oxyhydroxides in organic-rich sediments is the primary mechanism for releasing As to groundwater. High levels of As and humic substances possibly play a critical role in causing the unique BFD in the Chianan plain of SW Taiwan.  相似文献   

8.
Various physico-chemical parameters, including fluoride (F), were analyzed to understand the hydro-geochemistry of an aquifer in a semi-arid region of India. Furthermore, the quality of the shallow and deep aquifer (using tube well and hand pumps) was also investigated for their best ecological use including drinking, domestic, agricultural and other activities. Different multivariate techniques were applied to understand the groundwater chemistry of the aquifer. Findings of the correlation matrix were strengthened by the factor analysis, and this shows that salinity is mainly caused by magnesium salts as compared to calcium salts in the aquifer. The problem of salinization seems mainly compounded by the contamination of the shallow aquifers by the recharging water. High factor loading of total alkalinity and bicarbonates indicates that total alkalinity was mainly due to carbonates and bicarbonates of sodium. The concentration of F was found more in the deep aquifer than the shallow aquifer. Further, only a few groundwater samples lie below the permissible limit of F, and this indicates a risk of dental caries in the populace of the study area. The present study indicates that regular monitoring of groundwater is an important step to avoid human health risks and to assess its quality for various ecological purposes.  相似文献   

9.
The Salí River Basin in north-west Argentina (7,000 km2) is composed of a sequence of Tertiary and Quaternary loess deposits, which have been substantially reworked by fluvial and aeolian processes. As with other areas of the Chaco-Pampean Plain, groundwater in the basin suffers a range of chemical quality problems, including arsenic (concentrations in the range of 12.2–1,660 μg L−1), fluoride (50–8,740 μg L−1), boron (34.0–9,550 μg L−1), vanadium (30.7–300 μg L−1) and uranium (0.03–125 μg L−1). Shallow groundwater (depths up to 15 m) has particularly high concentrations of these elements. Exceedances above WHO (2011) guideline values are 100% for As, 35% for B, 21% for U and 17% for F. Concentrations in deep (>200 m) and artesian groundwater in the basin are also often high, though less extreme than at shallow depths. The waters are oxidizing, with often high bicarbonate concentrations (50.0–1,260 mg L−1) and pH (6.28–9.24). The ultimate sources of these trace elements are the volcanic components of the loess deposits, although sorption reactions involving secondary Al and Fe oxides also regulate the distribution and mobility of trace elements in the aquifers. In addition, concentrations of chromium lie in range of 79.4–232 μg L−1 in shallow groundwater, 129–250 μg L−1 in deep groundwater and 110–218 μg L−1 in artesian groundwater. All exceed the WHO guideline value of 50 μg L−1. Their origin is likely to be predominantly geogenic, present as chromate in the ambient oxic and alkaline aquifer conditions.  相似文献   

10.
The 184-m cargo ship "Bunga Teratai Satu" ran aground on Sudbury Reef, within the Great Barrier Reef Marine Park, on 2 November 2000. Although no cargo or fuel was lost, the ship remained aground for 12 days and a large quantity of antifoulant paint containing tributyltin (TBT), zinc, and copper was scraped from the hull during the grounding and subsequent refloating operation. This resulted in extensive contamination of the reef sediments for up to 250 m surrounding the grounding site. Two laboratory-based experiments assessed the impact of contaminated sediments on the survival of both newly settled corals of Acropora microphthalma and branchlets of A. formosa. Newly settled corals exposed to sediments containing 8.0 mg kg–1 TBT, 72 mg kg–1 Cu, and 92 mg kg–1 Zn or greater suffered significantly higher mortality after 72 h, compared to control or low-concentration treatments. Coral recruits exposed to 40 mg kg–1 TBT (Sn), 306 mg kg–1 Cu, and 403 mg kg–1 Zn were all killed within 38 h. Branchlets from adult corals exposed to sediments with a high concentration of contaminants (TBT 160 mg kg–1, Cu 1,180 mg kg–1, and Zn 1,570 mg kg–1) suffered significant mortality (38%), whereas branchlets placed in treatments with lower levels of contaminants suffered no mortality. Visual bleaching of the branchlets was observed at high contaminant levels, but an overall reduction in the symbiotic zooxanthellae populations was not observed in surviving corals. The photosynthetic yields of light-adapted zooxanthellae remained constant in live branchlets, indicating that the TBT-contaminated sediment may be more toxic to the host than the symbiont. Our results show that antifoulant contamination at ship-grounding sites has the potential to cause major mortality of resident coral communities and can have a negative impact on the recovery of adult populations.Communicated by P.W. Sammarco, Chauvin  相似文献   

11.
Fluoride concentration of groundwater reserves occurs in many places in the world. A critical area for such contamination in India is alluvial soil of the plain region, consisting of five blocks (Jhajjar, Bahadurgarh, Beri, Matanhail, and Sahalawas) of the Jhajjar District adjacent to the National Capital Territory of India, New Delhi. The purpose of this study was to assess the association between water fluoride levels and prevalence of dental fluorosis among school children of the Jhajjar District of Haryana, India. The fluoride content in underground drinking water sources was found to vary in villages. Hence, the villages were categorized as high-fluoride villages (1.52–4.0 mg F/l) and low/normal-fluoride villages (0.30–1.0 mg F/l). The source of dental fluorosis data was school-going children (7–15 years) showing different stages and types of fluorosis who were permanent resident of these villages. The fraction of dental fluorosis-affected children varied from 30% to 94.85% in the high-fluoride villages and from 8.80% to 28.20% in the low/normal-fluoride villages. The results of the present study revealed that there existed a significant positive correlation between fluoride concentration in drinking water and dental fluorosis in high-fluoride villages (r = 0.508; p < 0.001) and insignificant correlation in low-fluoride villages.  相似文献   

12.
Fundamental to the accuracy of stable isotope analysis in trophodynamic studies is the ability to predict discrimination between a consumer and its diet. Despite the widespread use of stable isotope analysis in trophic ecology, uncertainty still surrounds the factors affecting consumer-diet discrimination. Here we present evidence that diet quality and location of muscle tissue analysed affects the consumer-diet discrimination for the western rock lobster, Panulirus cygnus. Consumer-diet δ15N and δ13C discrimination for western rock lobster tail tissue were 1.67–2.97 and 2.92–3.60‰, respectively, with δ13C discrimination differing to values reported in the literature. Differences in nitrogen and carbon discrimination were observed between tail and leg tissue of lobsters of 1.22 and 1.13‰, respectively. Diet quality was also found to affect consumer-diet discrimination, with high protein pilchard diet leading to lower δ15N and higher δ13C discrimination. Diet quality should be considered as a factor that has the potential to affect consumer-diet discrimination when interpreting results from stable isotope studies.  相似文献   

13.
Environmental exposure to arsenic (As) in the Kutahya region of the western Anatolia, Turkey has been reported to cause various types of arsenic-associated skin disorders (Dogan, Dogan, Celebi, & Baris, 2005). A geological and mineralogical study was conducted to find the sources and distribution of the As. Geogenic (background) levels were measured in samples collected from various sources in the Gediz, Simav, Tavsanli, Emet, Yoncali, Yenicekoy, and Muratdagi areas of the Kutahya region. Based on this analysis, we determined that natural sources are a domineering factor affecting the distribution of As, which was found: (1) mainly in evaporitic minerals, including colemanite (269–3900 ppm) and gypsum (11–99,999 ppm), but also in alunite (7–10 ppm) and chert (54–219 ppm); (2) in secondary epithermal gypsum, which has a high concentration of As in the form of realgar and orpiment along fracture zones of Mesozoic and Cenozoic carbonate aquifers; (3) in rocks, including limestone/dolomite (3–699 ppm) and travertine (5–4736 ppm), which are relatively more enriched in As than volcanics (2–14 ppm), probably because of secondary enrichment through hydrological systems; (4) in coal (1.9–46.5 ppm) in the sedimentary successions of the Tertiary basins; (5) in thermal waters, where As is unevenly distributed at concentrations varying from 0.0–0.9 mg/l. The highest As concentrations in thermal water (Gediz and Simav) correlate to the higher pH (7–9.3) and T (60–83°C) conditions and to the type of water (Na–HCO3–SO4 with high concentration of Ca, Mg, K, SiO2, and Cl in the water). Changes in pH can be related to some redox reactions, such as the cation exchange reactions driving the dissolution of carbonates and silicates. Fe-oxidation, high pH values (7–9.3), presence of other trace metals (Ni, Co, Pb, Zn, Al), increased salinity (Na, Cl), high B, Li, F, and SiO, high Fe, SO4 (magnetite, specularite-hematite, gypsum), and graphite, and the presence of U, Fe, Cu, Pb, Zn, and B, especially in the Emet, Gediz, and Simav areas, are the typical indicators for the geothermally affected water with high As content. A sixth source of As in this region is the ground (0.0–10.7 mg/l) and the surface waters (0.0022–0.01 mg/l), which are controlled by water–rock interaction, fracture system, and mixing/dilution of thermal waters. The high As concentration in groundwater corresponds to the areas where pathological changes are greatest in the habitants. Arsenic in ground water also effects ecology. For example, only Juriperus oxycedrus and J. varioxycedrus types of vegetation are observed in locations with the highest concentration of As in the region. Branches and roots of these plants are enriched in As.  相似文献   

14.
The distribution and enrichment of selected trace metals (Cd, Cr, Cu, Ni, Pb, Sn, Zn) in benthic sediments of the Southport Broadwater, a semi-enclosed coastal body of water adjacent to the Gold Coast city, south-eastern Queensland, Australia, was studied with the objective of assessing the extent and degree of sediment contamination. Sediment samples from the 0–10 cm and 10–20 cm depth intervals of 32 sites within the Southport Broadwater and surrounding residential canals were analysed for particle size distribution, pH, organic C and ‘near-total’ major (Al, Ca, Fe, Mn) and trace (Cd, Cr, Cu, Ni, Pb, Sn, Zn) metal contents. Sediment contamination for each trace metal was assessed by (1) comparison with Australian sediment quality guidelines, (2) calculation of the index of geoaccumulation based on regional background values, and (3) geochemical normalisation against Al (i.e. the abundance of alumino-silicate clay minerals). Based on this approach, the results indicate that submerged sediments in the study area are not presently enriched with Cd, Cr or Ni, with the spatial distribution of these metals being very well explained by the abundance of alumino-silicate clay minerals. However, several sites were strongly enriched with Cu, Pb, Sn and Zn, arising from sources related to either urban runoff or vessel maintenance activities. The study indicates that several varying approaches are needed for a satisfactory assessment of contaminant enrichment in estuarine sediments.  相似文献   

15.
Respiration rates and elemental composition (carbon and nitrogen) were determined for four dominant oncaeid copepods (Triconia borealis, Triconia canadensis, Oncaea grossa and Oncaea parila) from 0–1,000 m depth in the western subarctic Pacific. Across the four species of which dry weight (DW) varied from 2.0 to 32 μg, respiration rates measured at in situ temperature (3°C) increased with DW, ranging from 0.84 to 7.4 nl O2 individual−1 h−1. Carbon (C) and nitrogen (N) composition of the four oncaeid species ranged from 49–57% of DW and 7.0–10.3% of DW, respectively, and the resultant C:N ratios were 4.8–8.3. The high C contents and C:N ratios were reflected by large accumulation of lipids in their body. Specific respiration rates (SR, a fraction of body C respired per day) ranged between 0.5 and 1.3% day−1. Respiration rates adjusted to a body size of 1 mg body N (i.e. adjusted metabolic rates, AMR) of the four oncaeid species [0.6–1.1 μl O2 (mg body N)−0.8 h−1 at 3°C] were significantly lower than those (1.7–5.1) reported in the literature for oithonid and calanoid copepods at the same temperature. The present results indicate that lower metabolic expenditure due to less active swimming (pseudopelagic life mode) together with rich energy reserve in the body (as lipids) are the characters of oncaeid copepods inhabiting in the epi- and mesopelagic zones of this region.  相似文献   

16.
Assessment of the chemical components of Famenin groundwater,western Iran   总被引:2,自引:0,他引:2  
The Faminin area in the semi-arid Hamadan state, western Iran is facing a serious deficiency in groundwater resources due to an increasing demand associated with rapid population growth and agricultural development. The chemical composition of 78 well samples throughout the Faminin area was determined with the aim of evaluating the concentration of the background ions and identifying the major hydrogeochemical processes that control the groundwater chemistry. The similarity between rock and groundwater chemistries in the recharge area indicates a significant rock-water interaction. The hydrochemical types Na–HCO3 and Na–SO4 are the predominate forms in the groundwater, followed by water types Ca–HCO3 and Na–Cl. The high values of electrical conductivity and high concentrations of Na+, Cl, SO42− and NO3 in the groundwater appeared to be caused by the dissolution of mineral phases and would appeared to be caused by anthropogenic activities, such as intense agricultural practices (application of fertilizers, irrigation practice), urban and industrial waste discharge, among others.  相似文献   

17.

Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water–rock–hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water–rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T2g3) and upper of Yongningzhen formation (T1yn4). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  相似文献   

18.
Growth of zooxanthellae in culture with two nitrogen sources   总被引:2,自引:0,他引:2  
Physiological characteristics of zooxanthellae were examined under nutrient-saturated conditions created by mixing ammonium (15NH4) with nitrate (15NO3) to give 0.88 mM total nitrogen. Growth rate varied with the form of nitrogen provided. Ammonium alone resulted in the lowest C:N and C:chl-a ratios. Although zooxanthellae took up nitrate in the absence of ammonium, ammonium assimilation was 1.3 times higher than nitrate assimilation. Ammonium strongly inhibited nitrate assimilation. While high-ammonium treatments resulted in the highest 14C incorporation into intermediate compounds, high nitrate levels resulted in the highest 14C incorporation into protein, suggesting that the intermediate compounds are produced prior to the subsequent production of protein when ammonium is the dominant N source. The enhanced production of intermediate compounds at the expense of carbon directed to protein synthesis in the presence of ammonium might be analogous to the “host factor” observed in zooxanthellae–host symbioses, since growth rate is depressed due to low production of protein. Received: 16 March 2000 / Accepted: 26 August 2000  相似文献   

19.
Humid dunes in the UK are at risk from nutrient pressures from multiple sources. The Water Framework Directive 2000/60/EC (WFD) requires assessment and identification of these pressures with appropriate measures defined to mitigate against further damage. We discuss the application of nitrate threshold values for the WFD classification, illustrating this with a case study at Merthyr Mawr, South Wales, where ephemeral groundwater discharge from a spring (‘Burrows Well’) sourced within the Carboniferous Limestone, creates a large dune slack. Ecological surveys suggest that the vegetation in this slack was in unfavourable condition, due to high levels of nitrate. Applying the source-pathway-receptor model an investigation was undertaken to improve the conceptual model and assess the significance of damage from groundwater derived nutrients. Results show groundwater nitrate concentrations?~?10 mg/l as NO3-N feeding the main slack waters. The vegetation survey data shows clear evidence of ecological damage, and the hydrogeological data traces the source of this back to the Carboniferous Limestone aquifer and not the overlying blown sands. Discharging groundwater is the source of the enrichment. Isotopic analysis suggests that the N is derived from inorganic fertilizer and/or atmospheric N. During the first cycle WFD characterisation the unfavourable status of the dunes due to chemical groundwater pressure resulted in a failure of the surrounding groundwater body, which was designated as poor status. The site has been re assessed for the 2nd Cycle WFD characterisation where recently developed nitrate ‘threshold’ values have been applied to assess the significance of damage for groundwater derived nutrients. The surrounding Carboniferous Limestone catchment is complex and could not be sufficiently constrained, thus land management changes could not be targeted. The paucity of historical or repeat vegetation surveys limits our ability to measure change within the dune vegetation and causes difficulties in understanding the impact of multiple pressures.  相似文献   

20.
For study, the fluoride (F) content and distribution pattern in groundwater of eastern Yunnan and western Guizhou fluorosis area in southwestern China, the F content of 93 water samples [groundwater (fissure water, cool spring, and hot springs), rivers water] and 60 rock samples were measured. The result shows the F content of the fissure water and cold spring water is 0.027–0.47 mg/L, and river water is 0.048–0.224 mg/L. The F content of hot spring water is 1.02–6.907 mg/L. The drinking water supplied for local resident is mainly from fissure water, cool spring, and river water. And the F content in all of them is much lower than the Chinese National Standard (1.0 mg/L), which is the safe intake of F in drinking water. The infected people in eastern Yunnan and western Guizhou fluorosis area have very little F intake from the drinking water. The hot spring water in fluorosis area of eastern Yunnan and western Guizhou, southwest China has high F content, which is not suitable for drinking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号