首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
Pasture systems in Hawaii are based primarily on kikuyugrass (Pennisetum clandestinum Hochst. ex Chiov.). Relationships among kikuyugrass P concentration, animal P requirements, and various soil P determinations are needed to help identify source areas for implementing pasture management strategies to limit P loss via overland flow. A total of 51 rotationally stocked kikuyugrass pastures (>20 yr old) with contrasting soil chemical properties were sampled. A satisfactory predictive relationship between modified-Truog (MT)-extractable phosphorus (P(MT)) and dissolved (<0.45-mum pore diameter), molybdate-reactive phosphorus (DRP) desorbed from soil in a water extract (DRP(WE)) was found when 0- to 4-cm-depth data for the soil orders with medium to high DRP(WE) (two Mollisols and an Inceptisol) were pooled separately from those with low DRP(WE) (five Andisols, three Ultisols, and an Oxisol). The oxalate phosphorus saturation index (PSI(ox)) procedure was the best predictor of DRP(WE) across soil orders when oxalate-extractable molybdate-reactive phosphorus (RP(ox)) was used to calculate PSI(ox) (PSI(ox)RP) rather than when total oxalate-extractable phosphorus (TP(ox)) was used (PSI(ox)TP). There was little DRP(WE) until PSI(ox)RP exceeded 6% or PSI(ox)TP exceeded 8%. A more empirical dilute-acid phosphorus saturation index (PSI(MT)) was also calculated using P(MT) and MT-extractable iron (Fe(MT)) and aluminum (Al(MT)). The PSI(MT) procedure showed some utility in predicting DRP(WE), was positively related to the PSI(ox) procedures, and can be more readily performed in agronomic soil testing laboratories than PSI(ox). The present research suggests that while Hawaiian kikuyugrass pastures tend to be sufficient to high in forage P, potential soil P release to water only appeared to be a possible environmental concern for the Mollisol and Inceptisol sites.  相似文献   

2.
There is a lack of information on how fertilization and initial Mehlich-3 phosphorus (M3P) interact to affect water soluble P (WSP) in soils. Our objectives were to (i) quantify the relationship between WSP and M3P for four textural diverse benchmark soils of North Carolina (NC) and (ii) quantify the change in WSP concentrations following P additions to soils over a wide range of initial M3P. Soils known to represent a wide range in M3P were collected from an Autryville loamy sand (loamy, siliceous, subactive, thermic Arenic Paleudults), Wasda muck (fine-loamy, mixed, semiactive, acid, thermic Histic Humaquepts), Georgeville silt loam (fine, kaolinitic, thermic Typic Kanhapludults), and Pacolet sandy clay loam (fine, kaolinitic, thermic Typic Kanhapludults) and analyzed for M3P, Fe, Al, and WSP. An incubation study was also conducted where four samples representing a range in M3P from each series were fertilized at rates of 150 and 300 kg P ha(-1), and WSP was measured at 1, 7, and 21 d after fertilization. The Wasda muck exhibited a change point at 115 mg P kg(-1) across a broad range of M3P concentrations (60-238 mg kg(-1)) while Autryville, Georgeville, and Pacolet series (with ranges in M3P of 32-328, 119-524, 0-1034 mg P kg(-1), respectively) maintained linear relationships between WSP and M3P. For the fertilized soils, significant increases in WSP occurred regardless of P rate. Yet, WSP concentrations were greater in soils with greater initial M3P. Thus, these data suggest that shifting animal waste applications to fields of relatively lower M3P concentrations would have an immediate impact on reducing risk for P losses, if all other factors are equal.  相似文献   

3.
Soil testing to predict phosphorus leaching   总被引:12,自引:0,他引:12  
Subsurface pathways can play an important role in agricultural phosphorus (P) losses that can decrease surface water quality. This study evaluated agronomic and environmental soil tests for predicting P losses in water leaching from undisturbed soils. Intact soil columns were collected for five soil types that a wide range in soil test P. The columns were leached with deionized water, the leachate analyzed for dissolved reactive phosphorus (DRP), and the soils analyzed for water-soluble phosphorus (WSP), 0.01 M CaCl2 P (CaCl2-P), iron-strip phosphorus (FeO-P), and Mehlich-1 and Mehlich-3 extractable P, Al, and Fe. The Mehlich-3 P saturation ratio (M3-PSR) was calculated as the molar ratio of Mehlich-3 extractable P/[Al + Fe]. Leachate DRP was frequently above concentrations associated with eutrophication. For the relationship between DRP in leachate and all of the soil tests used, a change point was determined, below which leachate DRP increased slowly per unit increase in soil test P, and above which leachate DRP increased rapidly. Environmental soil tests (WSP, CaCl2-P, and FeO-P) were slightly better at predicting leachate DRP than agronomic soil tests (Mehlich-1 P, Mehlich-3 P, and the M3-PSR), although the M3-PSR was as good as the environmental soil tests if two outliers were omitted. Our results support the development of Mehlich-3 P and M3-PSR categories for profitable agriculture and environmental protection; however, to most accurately characterize the risk of P loss from soil to water by leaching, soil P testing must be fully integrated with other site properties and P management practices.  相似文献   

4.
Concerns about regional surpluses of manure phosphorus (P) leading to increased P losses in runoff have led to interest in diet modification to reduce P concentrations in diets. The objectives of this study were to investigate how dietary P amendment affected P concentrations in litters and P losses in runoff following land application. We grew two flocks of turkeys on the same bed of litter using diets with two levels of non-phytate phosphorus (NPP), with and without phytase. The litters were incorporated into three soils in runoff boxes at a plant-available nitrogen (PAN) rate of 168 kg PAN/ha, with runoff generated on Days 1 and 7 under simulated rainfall and analyzed for dissolved reactive phosphorus (DRP) and total P. Litters were analyzed for water-soluble phosphorus (WSP) and total P, while soils in the runoff boxes were analyzed for WSP and Mehlich-3 phosphorus (M3-P). Formulating diets with lower NPP and phytase both decreased litter total P. Phytase had no significant effect on litter WSP at a 1:200 litter to water extraction ratio, but decreased WSP at a 1:10 extraction ratio. Using a combination of reducing NPP fed and phytase decreased the total P application rate by up to 38% and the P in surplus of crop removal by approximately 48%. Reducing the NPP fed reduced DRP in runoff from litter-amended soils at Day 1, while phytase had no effect on DRP concentrations. Increase in soil M3-P was dependent on total P applied, irrespective of diet. Reducing overfeeding of NPP and utilizing phytase in diets for turkeys should decrease the buildup of P in soils in areas of intensive poultry production, without increasing short-term concerns about dissolved P losses.  相似文献   

5.
The risk of P losses from agricultural land to surface and ground water generally increases as the degree of soil P saturation increases. A single-point soil P sorption index (PSI) was validated with adsorption isotherm data for determination of the P sorption status of Alberta soils. Soil P thresholds (change points) were then examined for two agricultural soils after eight annual applications of different rates of cattle manure and for three agricultural soils after one application of different rates of cattle manure. Linear relationships were found between soil-test P (STP) levels up to 1000 mg kg(-1) and desorbed P in the five Alberta soils. Weak linear relationships were also found between STP and runoff dissolved reactive phosphorus (DRP) in three of these soils. Change points for the degree of P saturation (DPS) were detected in four of the five soils at 3 to 44% for water-extractable P (WEP) and at 11 to 51% for CaCl(2)-extractable P (CaCl(2)-P). Change points were not found for DPS or runoff DRP. Overall DPS thresholds for the five soils combined were 27% for WEP and 44% for CaCl(2)-P at a critical desorbable-P value of 1 mg L(-1). The corresponding STP levels (44 mg kg(-1) for WEP and 71 mg kg(-1) for CaCl(2)-P) are similar to agronomic thresholds for crops grown on Alberta soils. Soluble P losses in overland flow and leaching may be greater in soils with DPS values that exceed these thresholds than in soils with lower DPS values.  相似文献   

6.
Many states have passed legislation that regulates agricultural P applications based on soil P levels and crop P uptake in an attempt to protect surface waters from nonpoint P inputs. Phytase enzyme and high available phosphorus (HAP) corn supplements to poultry feed are considered potential remedies to this problem because they can reduce total P concentrations in manure. However, less is known about their water solubility of P and potential nonpoint-source P losses when land-applied. This study was conducted to determine the effects of phytase enzyme and HAP corn supplemented diets on runoff P concentrations from pasture soils receiving surface applications of turkey manure. Manure from five poultry diets consisting of various combinations of phytase enzyme, HAP corn, and normal phytic acid (NPA) corn were surface-applied at 60 kg P ha(-1) to runoff boxes containing tall fescue (Festuca arundinacea Schreb.) and placed under a rainfall simulator for runoff collection. The alternative diets caused a decrease in manure total P and water soluble phosphorus (WSP) compared with the standard diet. Runoff dissolved reactive phosphorus (DRP) concentrations were significantly higher from HAP manure-amended soils while DRP losses from other manure treatments were not significantly different from each other. The DRP concentrations in runoff were not directly related to manure WSP. Instead, because the mass of manure applied varied for each treatment causing different amounts of manure particles lost in runoff, the runoff DRP concentrations were influenced by a combination of runoff sediment concentrations and manure WSP.  相似文献   

7.
Phosphorus (P) loss from agricultural land in surface runoff can contribute to eutrophication of surface water. This study was conducted to evaluate a range of environmental and agronomic soil P tests as indicators of potential soil surface runoff dissolved reactive P (DRP) losses from Ontario soils. The soil samples (0- to 20-cm depth) were collected from six soil series in Ontario, with 10 sites each to provide a wide range of soil test P (STP) values. Rainfall simulation studies were conducted following the USEPA National P Research Project protocol. The average DRP concentration (DRP30) in runoff water collected over 30 min after the start of runoff increased (p < 0.001) in either a linear or curvilinear manner with increases in levels of various STPs and estimates of degree of soil P saturation (DPS). Among the 16 measurements of STPs and DPSs assessed, DPS(M3) 2 (Mehlich-3 P/[Mehlich-3 Al + Fe]) (r2 = 0.90), DPS(M3)-3 (Mehlich-3 P/Mehlich-3 Al) (r2 = 0.89), and water-extractable P (WEP) (r2 = 0.89) had the strongest overall relationship with runoff DRP30 across all six soil series. The DPS(M3)-2 and DPS(M3)-3 were equally accurate in predicting runoff DRP30 loss. However, DPS(M3)-3 was preferred as its prediction of DRP30 was soil pH insensitive and simpler in analytical procedure, ifa DPS approach is adopted.  相似文献   

8.
Bioavailable phosphorus (BAP) in stormwater runoff is a key issue for control of eutrophication in agriculturally impacted watersheds. Laboratory experiments were conducted in soil runoff boxes to determine BAP content in simulated storm runoff in 10 (mostly) calcareous soils from the Minnesota River basin in southern Minnesota. The soluble reactive phosphorus (SRP) portion of the runoff BAP was significantly correlated with soil Mehlich-III P, Olsen P, and water-extractable P (all r2 > 0.90 and p < 0.001). A linear relationship (r2 = 0.88, p < 0.001) also was obtained between SRP in runoff and the phosphorus saturation index based on sorptivity (PSIs) calculated with sorptivity as a measure of the inherent soil P sorption capacity. Runoff levels of BAP estimated with iron oxide-impregnated paper were predicted well by various soil test P methods and the PSI, of the soils, but correlation coefficients between these variables and runoff BAP were generally lower than those for runoff SRP. Using these relationships and critical BAP levels for stream eutrophication, we found corresponding critical levels of soil Mehlich-III P and Olsen P (which should not be exceeded) to be 65 to 85 and 40 to 55 mg kg(-1), respectively.  相似文献   

9.
Excessively high soil P can increase P loss with surface runoff. This study used indoor rainfall simulations to characterize soil and runoff P relationships for five Midwest soils (Argiudoll, Calciaquaoll, Hapludalf, and two Hapludolls). Topsoil (15-cm depth, 241-289 g clay kg(-1) and pH 6.0-8.0) was incubated with five NH4H2PO4 rates (0-600 mg P kg(-1)) for 30 d. Total soil P (TPS) and soil-test P (STP) measured with Bray-P1 (BP), Mehlich-3 (M3P), Olsen (OP), Fe-oxide-impregnated paper (FeP), and water (WP) tests were 370 to 1360, 3 to 530, 10 to 675, 4 to 640, 7 to 507, and 2 to 568 mg P kg(-1), respectively. Degree of soil P saturation (DPS) was estimated by indices based on P sorption index (PSI) and STP (DPSSTP) and P, Fe, and Al extracted by ammonium oxalate (DPSox) or Mehlich-3 (DPSM3). Soil was packed to 1.1 g cm(-3) bulk density in triplicate boxes set at 4% slope. Surface runoff was collected during 75 min of 6.5 cm h(-1) rain. Runoff bioavailable P (BAP) and dissolved reactive P (DRP) increased linearly with increased P rate, STP, DPSox, and DPSM3 but curvilinearly with DPSSTP. Correlations between DRP or BAP and soil tests or saturation indices across soils were greatest (r > or = 0.95) for FeP, OP, and WP and poorest for BP and TPS (r = 0.83-0.88). Excluding the calcareous soil (Calciaquoll) significantly improved correlations only for BP. Differences in relationships between runoff P and the soil tests were small or nonexistent among the noncalcareous soils. Routine soil P tests can estimate relationships between runoff P concentration and P application or soil P, although estimates would be improved by separate calibrations for calcareous and noncalcareous soils.  相似文献   

10.
A study was initiated to investigate the relationship between soil test P and depth of soil sampling with runoff losses of dissolved molybdate reactive phosphorus (DMRP). Rainfall simulations were conducted on two noncalcareous soils, a Windthorst sandy loam (fine, mixed, thermic Udic Paleustalf) and a Blanket clay loam (fine, mixed, thermic Pachic Argiustoll), and two calcareous soils, a Purves clay (clayey, smectitic, thermic Lithic Calciustoll) and a Houston Black clay (fine, smectitic, thermic Udic Haplustert). Soil (0- to 2.5-, 0- to 5-, and 0- to 15-cm depths) and runoff samples were collected from each of the four soils in permanent pasture exhibiting a wide range in soil test P levels (as determined by Mehlich III and distilled water extraction) due to prior manure applications. Simulated rain was used to produce runoff, which was collected for 30 min. Good regression equations were derived relating soil test P level to runoff DMRP for all four soil types, as indicated by relatively high r2 values (0.715 to 0.961, 0- to 5-cm depth). Differences were observed for the depth of sampling, with the most consistent results observed with the 0- to 5-cm sampling depth. Runoff DMRP losses as a function of the concentration of P in soil were lower in calcareous soils (maximum of 0.74 mg L(-1)) compared with noncalcareous soils (maximum of 1.73 mg L(-1)). The results indicate that a soil test for environmental P could be developed, but it would require establishing different soil test P level criteria for different soils or classes of soils.  相似文献   

11.
Phosphorus loss in runoff from agricultural fields has been identified as an important contributor to eutrophication. The objective of this research was to determine the relationship between phosphorus (P) in runoff from a benchmark soil (Cecil sandy loam; fine, kaolinitic, thermic Typic Kanhapludult) and Mehlich III-, deionized water-, and Fe(2)O(3)-extractable soil P, and degree of phosphorus saturation (DPS). Additionally, the value of including other soil properties in P loss prediction equations was evaluated. Simulated rainfall was applied (75 mm h(-1)) to 54 1-m(2) plots installed on six fields with different soil test phosphorus (STP) levels. Runoff was collected in its entirety for 30 min and analyzed for total P and dissolved reactive phosphorus (DRP). Soil samples were collected from 0- to 2-, 0- to 5-, and 0- to 10-cm depths. The strongest correlation for total P and DRP occurred with DPS (r(2) = 0.72). Normalizing DRP by runoff depth resulted in improved correlation with deionized water-extractable P for the 0- to 10-cm sampling depth (r(2) = 0.81). The STP levels were not different among sampling depths and analysis of the regression equations revealed that soil sampling depth had no effect on the relationship between STP and P in runoff. For all forms of P in runoff and STP measures, the relationship between STP and runoff P was much stronger when the data were split into groups based on the ratio of oxalate-extractable Fe to Al. For all forms of P in runoff and all STP methods, R(2) increased with the inclusion of oxalate-extractable Al and Fe in the regression equation. The results of this study indicate that inclusion of site-specific information about soil Al and Fe content can improve the relationship between STP and runoff P.  相似文献   

12.
Contribution of particulate phosphorus to runoff phosphorus bioavailability   总被引:1,自引:0,他引:1  
Runoff P associated with eroded soil is partly solubilized in receiving waters and contributes to eutrophication, but the significance of particulate phosphorus (PP) in the eutrophying P load is debatable. We assessed losses of bioavailable P fractions in field runoff from fine-textured soils (Cryaquepts). Surface runoff at four sites and drain-flow at two of them was sampled. In addition to dissolved molybdate-reactive phosphorus (DRP) losses, two estimates of bioavailable PP losses were made: (i) desorbable PP, assessed by anion exchange resin-extraction (AER-PP) and (ii) redox-sensitive PP, assessed by extraction with bicarbonate and dithionite (BD-PP). Annual losses of BD-PP and AER-PP were derived from the relationships (R2 = 0.77-0.96) between PP and these P forms. Losses of BD-PP in surface runoff (94-1340 g ha(-1)) were typically threefold to fivefold those of DRP (29-510 kg ha(-1)) or AER-PP (13-270 g ha(-1)). Where monitored, drainflow P losses were substantial, at one of the sites even far greater than those via the surface pathway. Typical runoff DRP concentration at the site with the highest Olsen-P status (69-82 mg kg(-1)) was about 10-fold that at the site with the lowest Olsen P (31-45 mg kg(-1)), whereas the difference in AER-PP per mass unit of sediment was only threefold, and that of BD-PP 2.5-fold. Bioavailable P losses were greatly influenced by PP runoff, especially so on soils with a moderate P status that produced runoff with a relatively low DRP concentration.  相似文献   

13.
Concern over eutrophication has directed attention to manure management effects on phosphorus (P) loss in runoff. This study evaluates the effects of manure application rate and type on runoff P concentrations from two, acidic agricultural soils over successive runoff events. Soils were packed into 100- x 20- x 5-cm runoff boxes and broadcast with three manures (dairy, Bos taurus, layer poultry, Gallus gallus; swine, Sus scrofa) at six rates, from 0 to 150 kg total phosphorus (TP) ha(-1). Simulated rainfall (70 mm h(-1)) was applied until 30 min of runoff was collected 3, 10, and 24 d after manure application. Application rate was related to runoff P (r2 = 0.50-0.98), due to increased concentrations of dissolved reactive phosphorus (DRP) in runoff; as application rate increased, so did the contribution of DRP to runoff TP. Varied concentrations of water-extractable phosphorus (WEP) in manures (2-8 g WEP kg(-1)) resulted in significantly lower DRP concentrations in runoff from dairy manure treatments (0.4-2.2 mg DRP L(-1)) than from poultry (0.3-32.5 mg DRP L(-1)) and swine manure treatments (0.3-22.7 mg DRP L(-1)). Differences in runoff DRP concentrations related to manure type and application rate were diminished by repeated rainfall events, probably as a result of manure P translocation into the soil and removal of applied P by runoff. Differential erosion of broadcast manure caused significant differences in runoff TP concentrations between soils. Results highlight the important, but transient, role of soluble P in manure on runoff P, and point to the interactive effects of management and soils on runoff P losses.  相似文献   

14.
The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.  相似文献   

15.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

16.
Continual application of mineral fertilizer and manures to meet crop production goals has resulted in the buildup of soil P concentrations in many areas. A rainfall simulation study was conducted to evaluate the effect of the application of P sources differing in water-soluble P (WSP) concentration on P transport in runoff from two grassed and one no-till soil (2 m(2) plots). Triple superphosphate (TSP)-79% WSP, low-grade single superphosphate (LGSSP)-50% WSP, North Carolina rock phosphate (NCRP)-0.5% WSP, and swine manure (SM)-30% WSP, were broadcast (100 kg total P ha(-1)) and simulated rainfall (50 mm h(-1) for 30 min of runoff) applied 1, 7, 21, and 42 d after P source application. In the first rainfall event one d after fertilizer application, dissolved reactive P (DRP) and total P (TP) concentrations of runoff increased (P < 0.05) for all soils with an increase of source WSP; with DRP averaging 0.27, 0.50, 14.66, 41.69, and 90.47 mg L(-1); and total P averaging 0.34, 0.61, 19.05, 43.10, and 98.06 mg L(-1) for the control, NCRP, SM, LGSSP, and TSP, respectively. The loss of P in runoff decreased with time for TSP and SM, such that after 42 d, losses from TSP, SM, and LGSSP did not differ. These results support that P water solubility in P sources may be considered as an indicator of P loss potential.  相似文献   

17.
Effect of mineral and manure phosphorus sources on runoff phosphorus   总被引:3,自引:0,他引:3  
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.  相似文献   

18.
Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.  相似文献   

19.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

20.
Phosphorus runoff: effect of tillage and soil phosphorus levels   总被引:2,自引:0,他引:2  
Continued inputs of fertilizer and manure in excess of crop requirements have led to a build-up of soil phosphorus (P) levels and increased P runoff from agricultural soils. The objectives of this study were to determine the effects of two tillage practices (no-till and chisel plow) and a range of soil P levels on the concentration and loads of dissolved reactive phosphorus (DRP), algal-available phosphorus (AAP), and total phosphorus (TP) losses in runoff, and to evaluate the P loss immediately following tillage in the fall, and after six months, in the spring. Rain simulations were conducted on a Typic Argiudoll under a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Elapsed time after tillage (fall vs. spring) was not related to any form of P in runoff. No-till runoff averaged 0.40 mg L(-1) and 0.05 kg ha(-1) DRP and chisel-plow plots averaged 0.24 mg L(-1) and 0.02 kg ha(-1) DRP concentration and loads, respectively. The relationship between DRP and Bray P1 extraction values was approximated by a logistic function (S-shaped curve) for no-till plots and by a linear function for tilled plots. No significant differences were observed between tillage systems for TP and AAP in runoff. Bray P1 soil extraction values and sediment concentration in runoff were significantly related to the concentrations and amounts of AAP and TP in runoff. These results suggest that soil Bray P1 extraction values and runoff sediment concentration are two easily measured variables for adequate prediction of P runoff from agricultural fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号